基于时空残差张量学习的城市路网交通数据修复

Traffic data imputation of urban road network based on spatial-temporal residual tensor learning
李金龙1
李若南2
吴攀3
于广婧1
许伦辉1
1. 华南理工大学 土木与交通学院, 广州 510641
2. 哈尔滨工业大学(深圳)计算机科学与技术学院, 广东 深圳 518055
3. 重庆交通大学 交通运输学院, 重庆 400074

摘要

针对城市道路网络环境下各种软/硬件故障导致的交通数据缺失问题,提出了一种基于时空残差张量学习(spatial-temporal residual tensor learning,ST-RTL)的交通数据修复方法。该方法通过构造带缺失值的三维交通张量以最大程度表征原始路网时空信息;并在高斯分布假设基础上,采用Gibbs采样完成对缺失数据的CANDECOMP/PARAFAC(CP)张量分解与低秩重构。考虑到张量修复过程产生的残差值,研究设计一种可动态迭代的双向残差优化结构以捕捉剩余时空依赖特性,实现对缺失交通数据的精准修复。采用公开的杭州地铁客流数据进行模型构建与验证。结果表明,当缺失率为10%~80%时,三种缺失场景(随机、聚类和混合缺失)对张量结构破坏存在较大差异,其中聚类缺失的破坏程度最大,此时,ST-RTL的评估指标MAPE、RMSE和MAE分别位于3.1071~7.0371、16.3779~58.4286、3.7434~8.0135;且随着缺失率递增,ST-RTL模型各指标呈加速增加趋势。与HaLRTC、GAIN和BGCP等代表性基准模型相比,所建立的ST-RTL模型在可接受计算代价范围内具有更低的性能指标和更强的稳定性,能为智能交通系统提供高质量的基础数据。

基金项目

国家自然科学基金资助项目(52072130,11702099)

出版信息

DOI: 10.19734/j.issn.1001-3695.2023.03.0084
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第10期
所属栏目: 算法研究探讨
出版页码: 2972-2977
文章编号: 1001-3695(2023)10-014-2972-06

发布历史

[2023-05-09] 优先出版
[2023-10-05] 印刷出版

引用本文

李金龙, 李若南, 吴攀, 等. 基于时空残差张量学习的城市路网交通数据修复 [J]. 计算机应用研究, 2023, 40 (10): 2972-2977. (Li Jinlong, Li Ruonan, Wu Pan, et al. Traffic data imputation of urban road network based on spatial-temporal residual tensor learning [J]. Application Research of Computers, 2023, 40 (10): 2972-2977. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊