根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

一种TCN的改进模型及其在短期光伏功率区间预测的应用

Improved TCN model and its application in short-term photovoltaic power interval prediction
宋绍剑
姜屹远
刘斌
广西大学 电气工程学院, 南宁 530004

摘要

为了提高光伏功率预测的精度,提出了一种基于时序卷积网络(temporal convolutional network,TCN)的新型短期光伏功率区间预测模型。首先,采用深度残差收缩网络(deep residual shrinkage network,DRSN)的软阈值和注意力机制来改进TCN的残差模块以增强其对有用特征提取能力,并削弱冗余特征的不利影响;然后,利用樽海鞘群算法(slap swarm algorithm,SSA)对TCN的卷积层的卷积核大小和TCN层数等超参数进行自动寻优,以克服原TCN感受野不足的问题;接着,采用核密度估计(kernel density estimation,KDE)方法对所建改进TCN短期光伏功率预测模型的点预测结果进行误差分析,获得模型预测输出的区间。最后,通过对比仿真实验得到的结果表明,提出的SSA-DRSN-TCN模型的RMSE平均值为0.27,优于LSTM、GRU、CNN-LSTM和TCN等模型;而且,KDE方法能够在80%、90%和95%的置信度下准确描述光伏功率波动区间,验证了所提模型在提高光伏功率预测性能上的有效性。

基金项目

国家自然科学基金资助项目(61863003)
广西自然科学基金资助项目(2016GXNSFAA380327)

出版信息

DOI: 10.19734/j.issn.1001-3695.2023.02.0066
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第10期
所属栏目: 系统应用开发
出版页码: 3064-3069
文章编号: 1001-3695(2023)10-028-3064-06

发布历史

[2023-05-04] 优先出版
[2023-10-05] 印刷出版

引用本文

宋绍剑, 姜屹远, 刘斌. 一种TCN的改进模型及其在短期光伏功率区间预测的应用 [J]. 计算机应用研究, 2023, 40 (10): 3064-3069. (Song Shaojian, Jiang Yiyuan, Liu Bin. Improved TCN model and its application in short-term photovoltaic power interval prediction [J]. Application Research of Computers, 2023, 40 (10): 3064-3069. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊