基于可自动扩展的LSTM模型的航空发动机剩余寿命预测方法
Remaining useful life prediction method of aero-engine based on auto-expandable LSTM model
广西大学 a. 电气工程学院; b. 先进测控与智能电力研究中心, 南宁 530004
摘要
对航空发动机进行实时状态监测和健康管理可以有效降低发动机故障风险,确保飞机飞行安全。准确预测航空发动机的剩余寿命是有效监测发动机运行状态的一种重要手段,其中长短期记忆(long-short term memory,LSTM)网络常被使用。但由于航空发动机复杂的机械结构与运行模式,使用传统的LSTM网络对航空发动机的剩余寿命进行单次预测后,所得预测结果的准确率不足以满足其寿命预测的精度要求。基于LSTM网络的广泛使用以及它对时间序列数据的有效预测能力,考虑到采用多级预测的方法能够有效降低预测误差,提出了一种新型的可自动扩展的长短期记忆(automatically expandable LSTM,AELSTM)预测模型。AELSTM模型依托多个子模块逐级连接的网络结构,不断地提取前一级模块的输出误差作为后一级模块的训练值,形成了误差的多级预测机制,有效降低了模型的预测误差,提升了预测结果的准确性。基于美国国家航空航天局发布的C-MAPSS数据集的四个子集对AELSTM模型的预测效果进行了测试,实验结果表明,与传统的LSTM网络相比,AELSTM模型在四个子集上的均方根误差平均减少了95.44%,同时它的预测效果也优于现有的一些先进算法。实验充分验证了AELSTM模型在提升航空发动机剩余寿命预测准确度方面的有效性及优势。
基金项目
国家自然科学基金资助项目(52107081)
广西壮族自治区自然科学基金资助项目(AA22068071)
出版信息
DOI: 10.19734/j.issn.1001-3695.2023.01.0010
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第8期
所属栏目: 算法研究探讨
出版页码: 2311-2322
文章编号: 1001-3695(2023)08-011-2311-12
发布历史
[2023-03-20] 优先出版
[2023-08-05] 印刷出版
引用本文
胡立坤, 何旭杰, 殷林飞. 基于可自动扩展的LSTM模型的航空发动机剩余寿命预测方法 [J]. 计算机应用研究, 2023, 40 (8): 2311-2322. (Hu Likun, He Xujie, Yin Linfei. Remaining useful life prediction method of aero-engine based on auto-expandable LSTM model [J]. Application Research of Computers, 2023, 40 (8): 2311-2322. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊