基于特征和图结构信息增强的多教师学习图神经网络

Multi-teacher learning graph neural network based on feature and graph structure information augmentation
张嘉杰1
过弋1,2,3
王家辉4
1. 华东理工大学 信息科学与工程学院, 上海 200237
2. 大数据流通与交易技术国家工程实验室 商业智能与可视化技术研究中心, 上海 200436
3. 上海大数据与互联网受众工程技术研究中心, 上海 200072
4. 上海第二工业大学 计算机与信息工程学院, 上海 201209

摘要

近年来,图神经网络对图数据强大的表征能力和建模能力使其在诸多领域广泛应用并取得了重大突破。然而,现有模型往往倾向于对图卷积聚合策略和网络结构进行优化,缺乏了对图数据自身先验知识的探索。针对上述问题,通过知识蒸馏的方法,设计了一种基于特征信息和结构信息增强的多教师学习图神经网络,打破了现有模型对于数据先验知识提取的局限性。针对图数据背后所蕴涵的丰富特征与结构信息,分别设计了节点特征和边的数据增强方式。在此基础上,将原始数据和增强后的数据通过多教师学习模块进行知识嵌入,使得学生模型学习到更多关于数据的先验知识。在Cora、Citeseer和PubMed数据集上,节点分类准确率分别提升了1%、1.3%、1.1%。实验结果表明,提出的信息增强的多教师学习模型能够有效地捕获先验知识。

基金项目

上海市科学技术委员会科研计划项目(22DZ1204903,22511104800)

出版信息

DOI: 10.19734/j.issn.1001-3695.2022.11.0765
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第7期
所属栏目: 算法研究探讨
出版页码: 2013-2018
文章编号: 1001-3695(2023)07-014-2013-06

发布历史

[2023-02-15] 优先出版
[2023-07-05] 印刷出版

引用本文

张嘉杰, 过弋, 王家辉. 基于特征和图结构信息增强的多教师学习图神经网络 [J]. 计算机应用研究, 2023, 40 (7): 2013-2018. (Zhang Jiajie, Guo Yi, Wang Jiahui. Multi-teacher learning graph neural network based on feature and graph structure information augmentation [J]. Application Research of Computers, 2023, 40 (7): 2013-2018. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊