基于图模块度聚类的异常检测算法
Anomaly detection method based on graph modularity clustering
1. 河北工业大学 人工智能与数据科学学院, 天津 300401
2. 河北省大数据计算重点实验室, 天津 300401
摘要
社会网络的数据规模在不断扩大,现存的异常检测算法对复杂社会网络进行检测的效果不理想,提出了一种基于图模块度聚类的异常检测算法(anomaly detection algorithm based on graph modularity clustering,GMC_AD),该算法适用于解决受网络规模以及复杂度的限制导致检测效率不高的问题。GMC_AD算法在分析网络拓扑结构的基础上,通过引入异常节点加权机制和模块度聚类算法进行异常检测。GMC_AD算法主要在三个方面进行改进:a)设计网络中节点演化的量化策略,以此识别具有异常演化行为的节点来得到异常节点集合;b)通过模块度聚类的方法降低网络规模;c)在计算网络波动值的过程中使用加权机制合理考虑异常节点的影响,再通过网络波动值变化来检测异常。基于真实社会网络VAST、EU_E-mail和ENRON进行对比实验,GMC_AD算法准确地检测出异常发生的时段,实验结果显示在事件检测敏感性上提高了50%~82%,在异常检测运行效率上提高了30%~70%。实验结果表明,GMC_AD算法不仅提高了异常检测算法的准确率和敏感性,还提高了异常检测算法的效率。
基金项目
国家自然科学基金资助项目(61806072)
出版信息
DOI: 10.19734/j.issn.1001-3695.2022.10.0513
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第6期
所属栏目: 算法研究探讨
出版页码: 1721-1727
文章编号: 1001-3695(2023)06-019-1721-07
发布历史
[2023-01-05] 优先出版
[2023-06-05] 印刷出版
引用本文
富坤, 刘赢华, 郝玉涵, 等. 基于图模块度聚类的异常检测算法 [J]. 计算机应用研究, 2023, 40 (6): 1721-1727. (Fu Kun, Liu Yinghua, Hao Yuhan, et al. Anomaly detection method based on graph modularity clustering [J]. Application Research of Computers, 2023, 40 (6): 1721-1727. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊