基于机器学习的肺部CT图像非刚性配准误差预测方法
Error prediction for lung CT images nonrigid registration based on machine learning
1. 南京理工大学 电子工程与光电技术学院, 南京 210094
2. 中国科学院 苏州生物医学工程技术研究所, 江苏 苏州 215163
摘要
配准误差评估通常由人工完成,耗时费力;常用的Dice测度只关注组织边缘的配准误差,难以评估组织内部配准结果。针对以上问题,提出一种基于机器学习的肺部CT图像非刚性配准误差预测方法(PREML)。该方法首先构建形变场统计特征、形变场物理保真度特征和图像相似性特征三类特征,然后通过池化方法扩充特征数量,最后使用随机森林回归方法预测非刚性配准误差,并且使用自适应随机扰动方法模拟肺部配准误差空间分布,进一步提升形变场统计特征的配准误差表征能力。在三个肺部CT图像数据集上进行训练与测试,其配准误差预测结果与金标准之间的平均绝对差异为1.245±2.500 mm,预测性能优于基线方法。结果表明,PREML方法具有预测精度高、鲁棒性强的特点,可提升配准算法在临床应用的有效性和安全性。
基金项目
中国科学院青年创新促进会资助项目(2021324)
江苏省重点研发项目(BE2022049-2,BE2021053,BE2020625)
丽水市科技计划资助项目(2020ZDYF09)
苏州市科技计划资助项目(SS202054)
出版信息
DOI: 10.19734/j.issn.1001-3695.2022.09.0488
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第6期
所属栏目: 图形图像技术
出版页码: 1850-1856,1869
文章编号: 1001-3695(2023)06-040-1850-07
发布历史
[2022-12-12] 优先出版
[2023-06-05] 印刷出版
引用本文
刘宇航, 胡冀苏, 陈文建, 等. 基于机器学习的肺部CT图像非刚性配准误差预测方法 [J]. 计算机应用研究, 2023, 40 (6): 1850-1856,1869. (Liu Yuhang, Hu Jisu, Chen Wenjian, et al. Error prediction for lung CT images nonrigid registration based on machine learning [J]. Application Research of Computers, 2023, 40 (6): 1850-1856,1869. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊