双通道扩张卷积注意力图像去噪网络

Two-channel dilated convolution attentional image denoising network
曹义亲
邱沂
华东交通大学 软件学院, 南昌 330013

摘要

针对深度学习图像去噪算法存在网络过深导致细节丢失的问题,提出一种双通道扩张卷积注意力网络CEANet。拼接信息保留模块将每一层的输出特征图融合,弥补卷积过程中丢失的图像细节特征进行密集学习;扩张卷积可以在去噪性能和效率之间进行权衡,用更少的参数获取更多的信息,增强模型对噪声图像的表示能力,基于扩张卷积的稀疏模块通过扩大感受野获得重要的结构信息和边缘特征,恢复复杂噪声图像的细节;基于注意力机制的特征增强模块通过全局特征和局部特征进行融合,进一步指导网络去噪。实验结果表明,在高斯白噪声等级为25和50时,CEANet都获得了较高的峰值信噪比均值和结构相似性均值,能够更高效地捕获图像细节信息,在边缘保持和噪声抑制方面,具有较好的性能。相关实验证明了该算法进行图像去噪的有效性。

基金项目

国家自然科学基金资助项目(61663009)
江西省科技支撑计划重点项目(20161BBE50081)

出版信息

DOI: 10.19734/j.issn.1001-3695.2022.08.0424
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第5期
所属栏目: 图形图像技术
出版页码: 1548-1552,1564
文章编号: 1001-3695(2023)05-041-1548-05

发布历史

[2022-11-08] 优先出版
[2023-05-05] 印刷出版

引用本文

曹义亲, 邱沂. 双通道扩张卷积注意力图像去噪网络 [J]. 计算机应用研究, 2023, 40 (5): 1548-1552,1564. (Cao Yiqin, Qiu Yi. Two-channel dilated convolution attentional image denoising network [J]. Application Research of Computers, 2023, 40 (5): 1548-1552,1564. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊