基于局部敏感判别宽度学习的高光谱图像分类

Locality sensitive discriminative broad learning system for hyperspectral image classification
曹鹤玲a,b,c
宋昌隆a
楚永贺a
河南工业大学 a. 信息科学与工程学院; b. 河南省粮食信息处理国际联合实验室; c. 粮食信息处理与控制教育部重点实验室, 郑州 450001

摘要

宽度学习系统(BLS)以其良好的学习性能与泛化能力,在高光谱图像(HSI)分类中得到了广泛应用。然而宽度学习系统仅关注各类样本的可分性,忽略了样本之间的相对关系以及所蕴涵的判别信息,在一定程度上限制了宽度学习系统在高光谱图像分类任务中的性能。为此,提出一种局部敏感判别的宽度学习系统(LSDBLS)方法。该方法通过引入局部敏感判别分析考虑标记样本的判别信息与数据样本的局部流形结构,通过标记样本构建类内图和类间图来表征数据样本之间的相对关系。在此基础上,将类内图和类间图引入到宽度学习系统的目标函数中,通过最小化类内图以及最大化类间图,使得同类样本尽可能地聚集,不同类的样本尽可能地远离,增强LSDBLS对数据特征的判别能力。通过在三个HSI数据集上的实验结果表明,LSDBLS取得了良好的效果。

基金项目

国家自然科学基金资助项目(6220071360,61602154)
河南省高等学校重点科研项目(22A520024)
河南工业大学青年骨干教师培育项目
河南省重大公益专项(201300311200)

出版信息

DOI: 10.19734/j.issn.1001-3695.2022.07.0391
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第4期
所属栏目: 图形图像技术
出版页码: 1239-1245,1262
文章编号: 1001-3695(2023)04-045-1239-07

发布历史

[2022-10-19] 优先出版
[2023-04-05] 印刷出版

引用本文

曹鹤玲, 宋昌隆, 楚永贺. 基于局部敏感判别宽度学习的高光谱图像分类 [J]. 计算机应用研究, 2023, 40 (4): 1239-1245,1262. (Cao Heling, Song Changlong, Chu Yonghe. Locality sensitive discriminative broad learning system for hyperspectral image classification [J]. Application Research of Computers, 2023, 40 (4): 1239-1245,1262. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊