多时相遥感影像的深度卷积匹配算法研究
Depth convolution matching algorithm for multi-temporal remote sensing images
重庆交通大学 智慧城市学院, 重庆 400074
摘要
针对传统人工设计的特征描述符在面对几何差异和辐射差异较大、地物变化明显的多时相遥感影像时,容易造成大量误匹配问题,提出一种适用于遥感影像的双筛选双约束的卷积神经网络匹配算法,通过CNN提取影像深层语义特征图,在特征图中筛选同时满足优先最大原则和精确极值原则的关键点,并在对应位置提取512维描述符。在特征匹配阶段,通过由粗到精的反向匹配约束和RANSAC约束相结合的策略,保证了误匹配点有效剔除的同时保留一定数量的正确匹配点对,提高了匹配的精度。实验结果表明:该方法的匹配数量适中,正确匹配率较实验选取的其他算法相比有所提高,影像配准误差减小2个像素左右,匹配运行时间提升明显,匹配效果良好并且具有一定的适应性和鲁棒性。
基金项目
重庆市基础科学与前沿技术研究专项重点项目(cstc2015jcyjBX0023)
桂林市科学技术研究开发项目(20190601)
出版信息
DOI: 10.19734/j.issn.1001-3695.2022.06.0357
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第3期
所属栏目: 图形图像技术
出版页码: 932-937
文章编号: 1001-3695(2023)03-048-0932-06
发布历史
[2022-10-10] 优先出版
[2023-03-05] 印刷出版
引用本文
韦春桃, 李渊哲. 多时相遥感影像的深度卷积匹配算法研究 [J]. 计算机应用研究, 2023, 40 (3): 932-937. (Wei Chuntao, Li Yuanzhe. Depth convolution matching algorithm for multi-temporal remote sensing images [J]. Application Research of Computers, 2023, 40 (3): 932-937. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊