基于稀疏特征改进的单视图表面重建
Improved single-view surface reconstruction based on sparse feature
河北工业大学 电子信息工程学院, 天津 300401
摘要
基于深度学习的单视图三维重建是当前的研究热点。为重建出更多的高频细节,SDF-SRN算法引入了位置编码,但在缺乏精确监督时,网络容易过拟合而导致凹凸不平的重建结果。针对这个问题,提出一种基于稀疏特征的网络模型,该模型凭借残差学习机制,令容易过拟合的网络预测高频残差。通过特征提取网络得到稀疏特征和全局特征,稀疏特征输入到一个超网络中生成预测浅头,该浅头负责预测符号距离函数的低频部分,而全局特征输入到另一个超网络生成另一个浅头来预测高频残差,这两部分通过权重因子构成最终的符号距离函数。频谱分析表明实验结果达到了相应的设计目的;与不同平滑表面重建方案对比,基于残差学习的平滑重建方案可以实现更平滑的表面重建,克服了SDF-SRN过拟合的问题,同时保留足够的细节;与其他先进的单视图重建方法的定性和定量对比结果证明了该方法的优越性。
基金项目
河北省自然科学基金资助项目(F2019202387)
出版信息
DOI: 10.19734/j.issn.1001-3695.2022.06.0320
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第3期
所属栏目: 图形图像技术
出版页码: 925-931,937
文章编号: 1001-3695(2023)03-047-0925-07
发布历史
[2022-09-14] 优先出版
[2023-03-05] 印刷出版
引用本文
梁春阳, 唐红梅, 席建锐, 等. 基于稀疏特征改进的单视图表面重建 [J]. 计算机应用研究, 2023, 40 (3): 925-931,937. (Liang Chunyang, Tang Hongmei, Xi Jianrui, et al. Improved single-view surface reconstruction based on sparse feature [J]. Application Research of Computers, 2023, 40 (3): 925-931,937. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊