根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

FedSharing:一种双区块链激励驱动的数据分享联邦学习框架

FedSharing:federated learning framework for data sharing driven by dual blockchain incentives
陈乔松a
许文杰a
何小阳a
丁小月b
孙开伟a
邓欣a
王进a
重庆邮电大学 a. 计算机科学与技术学院 数据工程与可视计算重庆市重点实验室; b. 自动化学院/工业互联网学院 智慧能源技术研究中心, 重庆 400065

摘要

联邦学习(federated learning,FL)能够在不丢失数据所有权的同时依托隐私保护技术实现安全的分布式模型训练,但也具有中心化、缺乏公平激励等问题。区块链(blockchain)本质上是一种分布式数据库,具有去中心化、信任公证等特点,但也具有网络吞吐量小、资源浪费等关键问题。针对上述技术方法的问题与特点,提出了一种双区块链激励驱动的数据分享联邦学习框架,称为FedSharing。分别构建主链与侧链,主链使用交易封装联邦学习中交换的全局参数,同时结合链上智能合约和链下扩容技术建立梯度状态通道;侧链提出了一种新型的修正Shapley值工作量证明算法(PoFS),修正传统Shapley值计算中成员平等性前提,将联邦学习中成员合作历史诚信度这一影响联盟利益的因素纳入考量。测试结果表明,梯度状态通道较智能合约去中心化方案每轮次时间平均降低4~5 s,PoFS共识下激励分配比例更符合公平实际。

基金项目

基于校企协同的大数据智能应用方案研究(K2021-114)
重庆市研究生科研创新项目(CYS21311)

出版信息

DOI: 10.19734/j.issn.1001-3695.2022.05.0277
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第1期
所属栏目: 区块链技术
出版页码: 33-41
文章编号: 1001-3695(2023)01-005-0033-09

发布历史

[2022-08-29] 优先出版
[2023-01-05] 印刷出版

引用本文

陈乔松, 许文杰, 何小阳, 等. FedSharing:一种双区块链激励驱动的数据分享联邦学习框架 [J]. 计算机应用研究, 2023, 40 (1): 33-41. (Chen Qiaosong, Xu Wenjie, He Xiaoyang, et al. FedSharing:federated learning framework for data sharing driven by dual blockchain incentives [J]. Application Research of Computers, 2023, 40 (1): 33-41. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊