基于时空图卷积网络的多变量时间序列预测方法
Multivariate time series forecasting with spatio-temporal graph convolutional network
1. 中国科学院网络化控制系统重点实验室, 沈阳 110016
2. 中国科学院沈阳自动化研究所, 沈阳 110016
3. 中国科学院机器人与智能制造创新研究院, 沈阳 110169
4. 中国科学院大学, 北京 100049
5. 昆山智能装备研究院, 江苏 苏州 215347
摘要
为了扩大时空图卷积网络的预测范围,将它应用在关联关系未知场景下的多变量时间序列预测问题,提出一种附加图学习层的时空图卷积网络预测方法(GLB-STGCN)。图学习层借助余弦相似度从时间序列中学习图邻接矩阵,通过图卷积网络捕捉多变量之间的相互影响,最后通过多核时间卷积网络捕捉时间序列的周期性特征,实现对多变量的精准预测。为验证GLB-STGCN的有效性,使用天文、电力、交通和经济四个领域的公共数据集和一个工业场景生产数据集进行预测实验,结果表明GLB-STGCN优于对比方法,在天文数据集上的表现尤为出色,预测误差分别降低了6.02%、8.01%、6.72%和5.31%。实验结果证明GLB-STGCN适用范围更广,预测效果更好,尤其适合自然周期明显的时间序列预测问题。
基金项目
辽宁省重点研发计划资助项目(2020JH2/10100039)
出版信息
DOI: 10.19734/j.issn.1001-3695.2022.05.0235
出版期卷: 《计算机应用研究》 印刷出版, 2022年第39卷 第12期
所属栏目: 算法研究探讨
出版页码: 3568-3573
文章编号: 1001-3695(2022)12-006-3568-06
发布历史
[2022-08-02] 优先出版
[2022-12-05] 印刷出版
引用本文
李怀翱, 周晓锋, 房灵申, 等. 基于时空图卷积网络的多变量时间序列预测方法 [J]. 计算机应用研究, 2022, 39 (12): 3568-3573. (Li Huai'ao, Zhou Xiaofeng, Fang Lingshen, et al. Multivariate time series forecasting with spatio-temporal graph convolutional network [J]. Application Research of Computers, 2022, 39 (12): 3568-3573. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊