基于目标的域随机化方法在机器人操作方面的研究

Research on goal-based domain randomization method in robot manipulation
张夏禹
陈小平
中国科学技术大学, 合肥 230026

摘要

使用强化学习解决机器人操作问题有着诸多优势,然而传统的强化学习算法面临着奖励稀疏的困难,且得到的策略难以直接应用到现实环境中。为了提高策略从仿真到现实迁移的成功率,提出了基于目标的域随机化方法。使用基于目标的强化学习算法对模型进行训练,可以有效地应对机器人操作任务奖励稀疏的情况,得到的策略可以在仿真环境下良好运行。与此同时在算法中还使用了目标驱动的域随机化方法,在提高策略泛用性以及克服仿真和现实环境之间的差距上有着良好的效果,仿真环境下的策略容易迁移到现实环境中并成功执行。结果表明,使用了基于目标的域随机化方法的强化学习算法有助于提高策略从仿真到现实迁移的成功率。

基金项目

国家重点研发计划资助项目(2019YFE0125200)

出版信息

DOI: 10.19734/j.issn.1001-3695.2022.03.0108
出版期卷: 《计算机应用研究》 印刷出版, 2022年第39卷 第10期
所属栏目: 系统应用开发
出版页码: 3084-3088
文章编号: 1001-3695(2022)10-031-3084-05

发布历史

[2022-05-16] 优先出版
[2022-10-05] 印刷出版

引用本文

张夏禹, 陈小平. 基于目标的域随机化方法在机器人操作方面的研究 [J]. 计算机应用研究, 2022, 39 (10): 3084-3088. (Zhang Xiayu, Chen Xiaoping. Research on goal-based domain randomization method in robot manipulation [J]. Application Research of Computers, 2022, 39 (10): 3084-3088. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊