面向无监督分割的双分支上采样域自适应网络

Double branch upsampling domain adaptive network for unsupervised segmentation
韩宗桓1
刘名果1
李珅2
陈立家1
田敏1
兰天翔1
梁倩1
1. 河南大学 物理与电子学院, 河南 开封 475004
2. 开封平煤新型炭材料科技有限公司, 河南 开封 475002

摘要

工业应用中,表面压印字符图像全监督语义分割将会给企业带来高昂的数据集标注成本,针对该问题,提出了双支路特征融合的域适应分割方法(dual-branch feature fusion domain adaptation,DbFFDA)。借鉴U-Net的跨层连接设计思路,提出了双分支上采样结构的残差域适应分割网络(residual adaptation network,Res-Adp);同时提出了融合特征输入用于提升网络分割性能,克服了字符缺失的问题;此外,提出了分割连续性损失函数LCon,抑制了分割图像中噪点的产生。在石墨电极表面压印字符无监督分割实验中,所提方法MIoU值可达69.60%,实际分割效果已基本满足字符识别需求,有望在特定工业场景中投入实际应用,为企业节省数据集标注成本。

基金项目

国家自然科学基金资助项目(61901158)
河南省科技厅资助项目(202102210121,212102210500)
开封市重大科技专项资助项目(20ZD014,2001016)

出版信息

DOI: 10.19734/j.issn.1001-3695.2022.02.0062
出版期卷: 《计算机应用研究》 印刷出版, 2022年第39卷 第9期
所属栏目: 图形图像技术
出版页码: 2861-2866
文章编号: 1001-3695(2022)09-047-2861-06

发布历史

[2022-04-21] 优先出版
[2022-09-05] 印刷出版

引用本文

韩宗桓, 刘名果, 李珅, 等. 面向无监督分割的双分支上采样域自适应网络 [J]. 计算机应用研究, 2022, 39 (9): 2861-2866. (Han Zonghuan, Liu Mingguo, Li Shen, et al. Double branch upsampling domain adaptive network for unsupervised segmentation [J]. Application Research of Computers, 2022, 39 (9): 2861-2866. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊