根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

基于强化学习的高可靠性多域虚拟网络映射算法

High-reliability multi-domain virtual network mapping algorithm based on reinforcement learning
赵季红1,2
宋航1
曲桦2
雷智麟1
1. 西安邮电大学, 通信与信息工程学院, 西安 710121
2. 西安交通大学 电子信息工程学院, 西安 710049

摘要

现有的虚拟网络映射算法大多是依赖于人工规则对节点进行排序,决定节点先后映射的顺序,来优化节点映射从而提高虚拟网络请求的成功率。而在链路映射阶段普遍采用广度优先搜索算法,忽略了节点资源和链路资源具有强相关性的特点,从而只能取得局部最优的映射结果。针对上述问题,基于5G多域异构网络环境,从网络的可生存性的保护角度出发,提出一种使用双层强化学习的虚拟网络映射算法。将强化学习同时应用于网络映射的节点和链路两阶段,使用梯度策略和反向传播的方法对该网络模型进行训练,并使用此训练模型完成映射。仿真结果表明,与对比算法相比,该算法在优化节点映射的同时优化了链路映射,且在映射成功率、长期收益率、节点和链路的利用率等方面均取得较好结果。

基金项目

国家自然科学基金资助项目(61531013)
国家重点研发计划重点专项资助项目(2018YFB1800300)

出版信息

DOI: 10.19734/j.issn.1001-3695.2021.10.0594
出版期卷: 《计算机应用研究》 印刷出版, 2022年第39卷 第6期
所属栏目: 网络与通信技术
出版页码: 1809-1813,1819
文章编号: 1001-3695(2022)06-035-1809-05

发布历史

[2022-01-11] 优先出版
[2022-06-05] 印刷出版

引用本文

赵季红, 宋航, 曲桦, 等. 基于强化学习的高可靠性多域虚拟网络映射算法 [J]. 计算机应用研究, 2022, 39 (6): 1809-1813,1819. (Zhao Jihong, Song Hang, Qu Hua, et al. High-reliability multi-domain virtual network mapping algorithm based on reinforcement learning [J]. Application Research of Computers, 2022, 39 (6): 1809-1813,1819. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊