基于深度强化学习的AGV智能导航系统设计

Design of AGV intelligent navigation system based on deep reinforcement learning
贺雪梅1
匡胤1
杨志鹏2
杨亚乔3
1. 陕西科技大学 设计与艺术学院, 西安 710021
2. 湖北航天技术研究院总体设计所, 武汉 430040
3. 国网武汉市东西湖区供电公司, 武汉 430040

摘要

针对现有的AGV在大规模未知复杂环境中进行自主导航配送的问题,基于深度强化学习完成了AGV智能导航系统设计。首先,结合传感器对周围的障碍物进行探测感知,利用DDPG(deep deterministic policy gradient)算法实现AGV小车从环境的感知输入到动作的直接输出控制,帮助AGV完成自主导航和避障任务。此外,针对训练样本易受环境干扰的问题,提出了一种新颖的DL(disturb learning)- DDPG算法,通过对学习样本中相关数据进行高斯噪声预处理,帮助智能体适应噪声状态下的训练环境,提升了AGV在真实环境中的鲁棒性。仿真实验表明,经改进后的DL-DDPG 算法能够为AGV导航系统提供更高效的在线决策能力,使AGV小车完成自主导航与智能控制。

基金项目

陕西省科技厅资助项目(2019GY-077)
教育部人文社会科学研究规划基金资助项目(17YJAZH100)
陕西省教育厅人文社科一般专项项目(20JK0070)

出版信息

DOI: 10.19734/j.issn.1001-3695.2021.10.0472
出版期卷: 《计算机应用研究》 印刷出版, 2022年第39卷 第5期
所属栏目: 系统应用开发
出版页码: 1501-1504,1509
文章编号: 1001-3695(2022)05-036-1501-04

发布历史

[2021-12-31] 优先出版
[2022-05-05] 印刷出版

引用本文

贺雪梅, 匡胤, 杨志鹏, 等. 基于深度强化学习的AGV智能导航系统设计 [J]. 计算机应用研究, 2022, 39 (5): 1501-1504,1509. (He Xuemei, Kuang Yin, Yang Zhipeng, et al. Design of AGV intelligent navigation system based on deep reinforcement learning [J]. Application Research of Computers, 2022, 39 (5): 1501-1504,1509. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊