Probabilistic Riemannian quantification method with log-Euclidean metric learning

Probabilistic Riemannian quantification method with log-Euclidean metric learning
Zhang Xiaocheng1,2,3
Tang Fengzhen1,2
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
2. Institutes for Robotics & Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
3. University of Chinese Academy of Sciences, Beijing 100049, China

摘要

In many machine learning applications, the data may be symmetric positive definite(SPD) matrices which are not living in Euclidean space. This paper presented a new probabilistic Riemannian space quantization method based on log-Euclidean metric learning. The proposed method extended the Euclidean probabilistic learning vector quantization(PLVQ) method to deal with SPD matrices by treating them as points on the Riemannian manifold of SPD matrices equipped with log-Euclidean metric, through utilizing a parameterized distance function from log-Euclidean metric learning. On the BCI IV 2a dataset, the proposed method outperformed Euclidean PLVQ by 20% in terms of recognition accuracy. The proposed method also performs better than the first winner of BCI competition IV on this data set. It obtains comparable classification accuracy to PLVQ using affine invariant Riemannian metric, but requires much less computing time, i. e. only needs 1% of the training time, while 10% of the test time. The proposed method also obtains superior performance on the BCI III IIIa and ETH-80 datasets, showing its effectiveness and efficiency.

基金项目

国家自然科学基金资助项目(61803369)
中国科学院大学生创新实践训练计划资助项目(E01Z010601)

出版信息

DOI: 10.19734/j.issn.1001-3695.2021.09.0353
出版期卷: 《计算机应用研究》 Printed Article, 2022年第39卷 第3期
所属栏目: Algorithm Research & Explore
出版页码: 661-667,680
文章编号: 1001-3695(2022)03-003-0661-07

发布历史

[2021-11-29] Accepted Paper
[2022-03-05] Printed Article

引用本文

张晓铖, 唐凤珍. 基于对数欧氏度量学习的概率黎曼空间量化方法 [J]. 计算机应用研究, 2022, 39 (3): 661-667,680. (Zhang Xiaocheng, Tang Fengzhen. Probabilistic Riemannian quantification method with log-Euclidean metric learning [J]. Application Research of Computers, 2022, 39 (3): 661-667,680. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊