结合分辨矩阵与蚁群优化算法改进的特征选择方法

Improved feature selection method combining discernibility matrix and ant colony optimization algorithm
杨震宇1
叶军1,2
季雨瑄1
敖家欣1
王磊1,2
1. 南昌工程学院 信息工程学院, 南昌 330000
2. 江西省水信息协同感知与智能处理重点实验室, 南昌 330000

摘要

目前已有蚁群算法优化的特征选择方法,大多采用的是以属性依赖度和信息熵属性重要度作为路径上启发搜索因子,但这类搜索方法在某些决策表中存在算法早熟或搜索到的特征子集包含了冗余特征,从而导致选择精度显著下降。针对此类问题,根据条件属性在分辨矩阵中的占比提出了一种属性重要度的度量方法,以分辨矩阵重要度作为路径上启发因子,设计了一种基于分辨矩阵与蚁群算法优化的特征子集搜索方法。该算法从特征核出发,蚁群依次选择概率大的特征加入特征核集,直至找到最小特征子集算法终止。通过实例验证和UCI数据集实验结果表明,与基于属性依赖度和信息熵属性重要度的特征选择方法相比,在通常情况下,该算法能较小代价找到最小特征子集,并且可以有效减少计算工作量。

基金项目

江西省教育厅科技项目(GJJ211920,GJJ170995)
国家自然科学基金资助项目(61562061)

出版信息

DOI: 10.19734/j.issn.1001-3695.2021.08.0360
出版期卷: 《计算机应用研究》 印刷出版, 2022年第39卷 第4期
所属栏目: 算法研究探讨
出版页码: 1118-1123,1131
文章编号: 1001-3695(2022)04-027-1118-06

发布历史

[2021-11-29] 优先出版
[2022-04-05] 印刷出版

引用本文

杨震宇, 叶军, 季雨瑄, 等. 结合分辨矩阵与蚁群优化算法改进的特征选择方法 [J]. 计算机应用研究, 2022, 39 (4): 1118-1123,1131. (Yang Zhenyu, Ye Jun, Ji Yuxuan, et al. Improved feature selection method combining discernibility matrix and ant colony optimization algorithm [J]. Application Research of Computers, 2022, 39 (4): 1118-1123,1131. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊