Traffic flow prediction model based on attention mechanism of temporal graph

Traffic flow prediction model based on attention mechanism of temporal graph
Yao Xiaomin
Zhang Xinlan
Zhang Zhenguo
Intelligent Information Processing Lab, College of Engineering, Yanbian University, Yanji Jilin 133002, China

摘要

Traffic condition prediction is an important part of intelligent transportation system, and traffic flow is the most direct embodiment of traffic condition. Therefore, traffic flow prediction has important application value. On the one hand, the roads in the city have spatial topological properties, on the other hand, the traffic flow changes dynamically with time. Therefore, the key to the prediction of traffic flow is to model the time and space dependence in the data. In view of this characteristic, this paper used neural network model and attention mechanism to explore the temporal and spatial dependence relationship in traffic flow data, and proposed a traffic flow prediction model based on time map attention. In terms of spatial dependence, it used a learning algorithm combining graph convolution network and attention to assign different weights to nodes with diffe-rent influence degrees, and added node adaptive learning to effectively extract spatial features. In terms of time dependence, it used the temporal convolution network to extract the temporal features, and expanded the sensing domain by expanding convolution, so as to capture the features of longer time series data. A spatial-temporal network layer was composed of graph attention network and time convolution network, which was finally connected to the output layer to output the prediction results. The model used the combination of graph convolution neural network and attention mechanism to extract spatial features, fully considered the spatial relationship between roads, and used temporal convolution network to capture temporal features. After experiments on two real datasets, it is found that it has good performance in the next 15, 30 and 60 minutes, and the results are better than the existing baselines.

基金项目

国家自然科学基金资助项目(62162062)

出版信息

DOI: 10.19734/j.issn.1001-3695.2021.08.0344
出版期卷: 《计算机应用研究》 Printed Article, 2022年第39卷 第3期
所属栏目: Algorithm Research & Explore
出版页码: 770-773,779
文章编号: 1001-3695(2022)03-021-0770-04

发布历史

[2021-11-15] Accepted Paper
[2022-03-05] Printed Article

引用本文

姚晓敏, 张心蓝, 张振国. 基于时间图注意力的交通流量预测模型 [J]. 计算机应用研究, 2022, 39 (3): 770-773,779. (Yao Xiaomin, Zhang Xinlan, Zhang Zhenguo. Traffic flow prediction model based on attention mechanism of temporal graph [J]. Application Research of Computers, 2022, 39 (3): 770-773,779. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊