基于多模态推理图神经网络的场景文本视觉问答模型
Visual question answering model of vision and scene text based on multi-modal reasoning graph neural network
辽宁工程技术大学 软件学院, 辽宁 葫芦岛 125105
摘要
文本阅读能力差和视觉推理能力不足是现有视觉问答(visual question answering,VQA)模型效果不好的主要原因,针对以上问题,设计了一个基于图神经网络的多模态推理(multi-modal reasoning graph neural network,MRGNN)模型。利用图像中多种形式的信息帮助理解场景文本内容,将场景文本图片分别预处理成视觉对象图和文本图的形式,并且在问题自注意力模块下过滤多余的信息;使用加入注意力的聚合器完善子图之间相互的节点特征,从而融合不同模态之间的信息,更新后的节点利用不同模态的上下文信息为答疑模块提供了更好的功能。在ST-VQA和TextVQA数据集上验证了有效性,实验结果表明,相比较此任务的一些其他模型,MRGNN模型在此任务上有明显的提升。
基金项目
辽宁省自然科学基金面上项目
中国人民解放军总装备部装备预研基金项目
出版信息
DOI: 10.19734/j.issn.1001-3695.2021.06.0197
出版期卷: 《计算机应用研究》 印刷出版, 2022年第39卷 第1期
所属栏目: 图形图像技术
出版页码: 280-284,302
文章编号: 1001-3695(2022)01-050-0280-05
发布历史
[2022-01-05] 印刷出版
引用本文
张海涛, 郭欣雨. 基于多模态推理图神经网络的场景文本视觉问答模型 [J]. 计算机应用研究, 2022, 39 (1): 280-284,302. (Zhang Haitao, Guo Xinyu. Visual question answering model of vision and scene text based on multi-modal reasoning graph neural network [J]. Application Research of Computers, 2022, 39 (1): 280-284,302. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊