基于改进全局—局部注意网络的室内场景识别方法

Indoor scene recognition method based on improved global-local attention network
徐江浪a,b
万新军a,b
夏振平a
胡伏原a,b
苏州科技大学 a. 电子与信息工程学院; b. 苏州市虚拟现实智能交互及应用技术重点实验室, 江苏 苏州 215009

摘要

由于卷积神经网络(CNN)大多侧重于全局特征学习,忽略了包含更多细节的局部特征信息,使得室内场景识别的准确率难以提高。针对这一问题,提出了基于改进全局—局部注意网络(GLANet)的室内场景识别方法。首先,利用GLANet捕捉场景图像的全局特征和局部特征,增加图像特征中的细节信息;然后,在局部网络中引入non-local注意力模块,通过注意力图和特征图的卷积来进一步保留图像的细节特征,最后融合网络不同阶段的多种特征进行分类。通过在MIT Indoor67和SUN397数据集上的训练和验证,所提方法的识别准确率与LGN方法相比分别提高了1.98%和3.07%。实验结果表明,该算法能够有效捕获全局语义信息和精细的局部细节,显著提高了识别准确率。

基金项目

国家自然科学基金资助项目(61876121,62002254)
江苏省重点研发计划资助项目(BE2017663)
江苏省高等教育自然科学研发项目(19KJB520054)

出版信息

DOI: 10.19734/j.issn.1001-3695.2021.05.0207
出版期卷: 《计算机应用研究》 印刷出版, 2022年第39卷 第1期
所属栏目: 图形图像技术
出版页码: 316-320
文章编号: 1001-3695(2022)01-057-0316-05

发布历史

[2022-01-05] 印刷出版

引用本文

徐江浪, 万新军, 夏振平, 等. 基于改进全局—局部注意网络的室内场景识别方法 [J]. 计算机应用研究, 2022, 39 (1): 316-320. (Xu Jianglang, Wan Xinjun, Xia Zhenping, et al. Indoor scene recognition method based on improved global-local attention network [J]. Application Research of Computers, 2022, 39 (1): 316-320. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊