基于深度半监督的柬语句子级情感分类

Sentiment classification of Khmer sentences based on deep semi-supervised
李超1a,1b
严馨1a,1b
徐广义2
莫源源3,4
周枫1a,1b,4
1. 昆明理工大学 a. 信息工程与自动化学院; b. 云南省人工智能重点实验室, 昆明 650500
2. 云南南天电子信息产业股份有限公司, 昆明 650040
3. 云南民族大学 东南亚语言文化学院, 昆明 650500
4. 上海师范大学语言研究所, 上海 200234

摘要

针对柬语标注数据较少、语料稀缺,柬语句子级情感分析任务进步缓慢的问题,提出了一种基于深度半监督CNN(convolutional neural networks)的柬语句子级情感极性分类方法。该方法通过融合词典嵌入的分开卷积CNN模型,利用少量已有的柬语情感词典资源提升句子级情感分类任务性能。首先构建柬语句子词嵌入和词典嵌入,通过使用不同的卷积核对两部分嵌入分别进行卷积,将已有情感词典信息融入到CNN模型中去,经过最大延时池化得到最大输出特征,把两部分最大输出特征拼接后作为全连接层输入;然后通过结合半监督学习方法——时序组合模型,训练提出的深度神经网络模型,利用标注与未标注语料训练,降低对标注语料的需求,进一步提升模型情感分类的准确性。结果证明,通过半监督方法时序组合模型训练,在人工标记数据相同的情况下,该方法相较于监督方法在柬语句子级情感分类任务上准确率提升了3.89%。

基金项目

国家自然科学基金资助项目(61462055,61562049)

出版信息

DOI: 10.19734/j.issn.1001-3695.2021.04.0105
出版期卷: 《计算机应用研究》 印刷出版, 2021年第38卷 第11期
所属栏目: 算法研究探讨
出版页码: 3283-3288
文章编号: 1001-3695(2021)11-014-3283-06

发布历史

[2021-11-05] 印刷出版

引用本文

李超, 严馨, 徐广义, 等. 基于深度半监督的柬语句子级情感分类 [J]. 计算机应用研究, 2021, 38 (11): 3283-3288. (Li Chao, Yan Xin, Xu Guangyi, et al. Sentiment classification of Khmer sentences based on deep semi-supervised [J]. Application Research of Computers, 2021, 38 (11): 3283-3288. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊