基于改进OpenPose的学生行为识别研究
Research on student behavior recognition based on improved OpenPose
上海工程技术大学 电子电气工程学院, 上海 201600
摘要
学习者的行为动作能够反映出学习者的学习状态。传统学习者行为识别方法存在实时性不高、准确率低等问题。针对以上问题,提出了一种基于改进OpenPose的学习者行为识别方法。该方法从人体骨骼关节点角度出发,首先通过高斯滤波消除图像中的高斯噪声;然后通过融入注意力机制的目标检测算法检测图像中的目标学生位置,再将检测后的图像通过改进的OpenPose模型提取人体骨骼关节点坐标;最后利用ST-SVM分类器对获取的关节点坐标进行分类,从而快速准确地识别出学习者的行为状态。实验结果表明,该方法能够快速、准确地识别出学生的行为动作,准确率达到99%以上,fps达到了20以上,相比原模型,fps提升了50%。
基金项目
国家重点研发计划资助项目(2019YFB1802700)
上海工程技术大学研究生创新计划资助项目(19KY0232)
出版信息
DOI: 10.19734/j.issn.1001-3695.2020.11.0435
出版期卷: 《计算机应用研究》 印刷出版, 2021年第38卷 第10期
所属栏目: 图形图像技术
出版页码: 3183-3188
文章编号: 1001-3695(2021)10-054-3183-06
发布历史
[2021-10-05] 印刷出版
引用本文
苏超, 王国中. 基于改进OpenPose的学生行为识别研究 [J]. 计算机应用研究, 2021, 38 (10): 3183-3188. (Su Chao, Wang Guozhong. Research on student behavior recognition based on improved OpenPose [J]. Application Research of Computers, 2021, 38 (10): 3183-3188. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊