基于3D深度胶囊网络的高光谱和LiDAR数据融合分类
3D-deep capsule network classification for fused hyperspectral and LiDAR data
1. 广东工业大学 a. 计算机学院; b. 广东省信息物理融合系统重点实验室, 广州 510006
2. 南宁师范大学 a. 北部湾环境演变与资源利用教育部重点实验室; b. 广西地表过程与智能模拟重点实验室, 南宁 530001
摘要
针对高光谱和LiDAR成像优势,通过构建三维深度胶囊网络(3D-deep capsule network,3D-DCN)探索了这两种遥感数据源在城市地物分类上的应用。该网络通过使用两层3D-CNN结构实现融合后数据的非线性特征映射,然后紧跟胶囊网络生成代表特征的矢量并实现卷积、封装和分类;针对胶囊网络层间的非线性激活函数提出一种称为e-squash的非线性激活函数用于特征学习。在城市数据集上的分类实验表明,使用LiDAR高程特征数据极大地改善了高光谱图像分类精度,采用提出激活函数的3D-DCN在城市数据分类方面比经典分类方法和未采用e-squash的胶囊网络具有更大的应用潜力。
关键词
基金项目
国家自然科学基金资助项目(61701123)
国家高分地球观测主要项目(83-Y40G33-9001-18/20)
广东省信息物理融合重点实验室项目(2016B030301008)
广东省农业科学与技术创新团队项目(2019KJ147)
广东省科技计划资助项目(2016B010127005)
广西北部湾环境演变与资源利用教育部重点实验室(南宁师范大学)和广西地表过程与智能模拟重点实验室(南宁师范大学)开放或系统基金资助项目(NNNU-KLOP-K1936)
出版信息
DOI: 10.19734/j.issn.1001-3695.2020.09.0398
出版期卷: 《计算机应用研究》 印刷出版, 2021年第38卷 第8期
所属栏目: 图形图像技术
出版页码: 2526-2529
文章编号: 1001-3695(2021)08-052-2526-04
发布历史
[2021-08-05] 印刷出版
引用本文
张雄山, 赵艮平, 程良伦. 基于3D深度胶囊网络的高光谱和LiDAR数据融合分类 [J]. 计算机应用研究, 2021, 38 (8): 2526-2529. (Zhang Xiongshan, Zhao Genping, Cheng Lianglun. 3D-deep capsule network classification for fused hyperspectral and LiDAR data [J]. Application Research of Computers, 2021, 38 (8): 2526-2529. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊