基于网格密度和局部敏感哈希函数的并行化聚类算法

Partitioning-based clustering algorithm using grid density and locality sensitive hash function based on MapReduce
毛伊敏1
陶涛1
曹文梁2
1. 江西理工大学 信息工程学院, 江西 赣州 341000
2. 东莞职业技术学院 计算机工程系, 广东 东莞 518172

摘要

针对大数据背景下基于划分的聚类算法中存在初始中心敏感,节点间通信开销大以及集群效率低下等问题,提出了基于网格密度和局部敏感哈希函数的PBGDLSH-MR并行化聚类算法。首先,对初始数据集提出网格密度策略(GDS)获取初始中心点,有效避免了随机选取引起的初始中心敏感的问题;其次,提出基于局部敏感哈希函数的数据分区(DP-LSH)用于投射关联性较大的数据对象到同一子数据集中,得到map上的数据分区,并设计相似性度量公式(SI)对数据分区结果进行评价,从而降低了节点间的通信开销;接着设计自适应分组策略(AGS)处理数据分区中数据倾斜的问题,进而有效地提高了集群效率;最后,结合MapReduce计算模型并行挖掘簇中心,生成最终聚类结果。实验结果表明,PBGDLSH-MR算法的聚类效果更佳,同时在大数据环境下能有效地提高并行计算的效率。

基金项目

国家重点研发计划资助项目(2018YFC1504705)
国家自然科学基金资助项目(41562019)
广东省普通高校特色创新(自然科学)资助项目(2019GKTSCX142,2017GKTSCX101)

出版信息

DOI: 10.19734/j.issn.1001-3695.2020.04.0109
出版期卷: 《计算机应用研究》 印刷出版, 2021年第38卷 第5期
所属栏目: 算法研究探讨
出版页码: 1422-1427
文章编号: 1001-3695(2021)05-025-1422-06

发布历史

[2021-05-05] 印刷出版

引用本文

毛伊敏, 陶涛, 曹文梁. 基于网格密度和局部敏感哈希函数的并行化聚类算法 [J]. 计算机应用研究, 2021, 38 (5): 1422-1427. (Mao Yimin, Tao Tao, Cao Wenliang. Partitioning-based clustering algorithm using grid density and locality sensitive hash function based on MapReduce [J]. Application Research of Computers, 2021, 38 (5): 1422-1427. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊