基于最大信息传递熵的ICS因果关系建模
ICS causality modeling based on maximum information transfer entropy
合肥工业大学 a. 计算机与信息学院; b. 大数据知识工程教育部重点实验室; c. 工业安全与应急技术安徽省重点实验室, 合肥 230601
摘要
针对传统因果关系算法难以准确分析含大量噪声的非线性数据的问题进行了研究,提出基于最大信息传递熵的因果关系建模算法。首先,利用最大信息系数对非线性数据的时序趋势间的关联度进行检测,弱化噪声对变量间相关性的影响;然后根据筛选因子剔除弱相关变量,并通过随机经验估值计算强关联变量间的传递熵,以减少传递熵的计算量;最后,传递熵确定因果关系方向,形成支持链路溯源的单向因果网络。利用经典化工过程数据集对该算法进行测试分析,实验结果表明,相比于现有的因果关系建模算法,该算法可定位异常变量,对12维以上的高维数据建模的稳定性高于85%,因果关系的准确率可达83.33%,实际建模效果优于对比算法,可用于工业控制系统异常检测定位。
基金项目
国家重点研发计划专项资助项目(2016YFC0801804,2016YFC0801405)
中央高校基本科研业务费专项资金资助项目(PA2019GDPK0074)
出版信息
DOI: 10.19734/j.issn.1001-3695.2020.01.0033
出版期卷: 《计算机应用研究》 印刷出版, 2021年第38卷 第3期
所属栏目: 系统应用开发
出版页码: 800-804
文章编号: 1001-3695(2021)03-031-0800-05
发布历史
[2021-03-05] 印刷出版
引用本文
张仁斌, 曹宗泽, 吴克伟. 基于最大信息传递熵的ICS因果关系建模 [J]. 计算机应用研究, 2021, 38 (3): 800-804. (Zhang Renbin, Cao Zongze, Wu Kewei. ICS causality modeling based on maximum information transfer entropy [J]. Application Research of Computers, 2021, 38 (3): 800-804. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊