基于卷积神经网络的语义分割算法研究

Research on semantic segmentation algorithm based on convolutional neural network
熊炜1,2
童磊1
金靖熠1
王传胜1
王娟1
曾春艳1
1. 湖北工业大学 电气与电子工程学院, 武汉 430068
2. 美国南卡罗来纳大学 计算机科学与工程系, 南卡 哥伦比亚 29201

摘要

针对语义分割中残差网络并不能完好地提取图像信息和分割效果差的问题,提出一种联合特征金字塔模型(JFP)用来融合残差网络的输出特征,并结合暗黑空间金字塔池化模型(ASPP)进一步提取特征。在解码部分应用简单的解码结构,恢复图像尺寸完成语义分割;同时引入注意力模型作为辅助语义分割网络,辅助神经网络进行训练。该方法分别在Pascal VOC 2012数据集和增强的Pascal VOC 2012数据集上对网络进行训练,并在Pascal VOC 2012的验证集上进行测试,其平均交并集之比(mIoU)分别达到了78.55%和80.14%,表明该方法具有良好的语义分割性能。

基金项目

国家留学基金资助项目(201808420418)
国家自然科学基金资助项目(61571182,61601177)
湖北省自然科学基金资助项目(2019CFB530)

出版信息

DOI: 10.19734/j.issn.1001-3695.2019.12.0705
出版期卷: 《计算机应用研究》 印刷出版, 2021年第38卷 第4期
所属栏目: 图形图像技术
出版页码: 1261-1264
文章编号: 1001-3695(2021)04-058-1261-04

发布历史

[2021-04-05] 印刷出版

引用本文

熊炜, 童磊, 金靖熠, 等. 基于卷积神经网络的语义分割算法研究 [J]. 计算机应用研究, 2021, 38 (4): 1261-1264. (Xiong Wei, Tong Lei, Jin Jingyi, et al. Research on semantic segmentation algorithm based on convolutional neural network [J]. Application Research of Computers, 2021, 38 (4): 1261-1264. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊