根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

基于MLP神经网络的分组密码算法能量分析研究

Research on side channel analysis of block cipher algorithm based on MLP neural network
王恺1,2
蔡爵嵩1
严迎建1
1. 战略支援部队信息工程大学, 郑州 450001
2. 中国人民解放军 32125部队, 济南 250001

摘要

随着嵌入式密码设备的广泛应用,侧信道分析(side channel analysis,SCA)成为其安全威胁之一。通过对密码算法物理实现过程中的泄露信息进行分析实现密钥恢复,进而对密码算法实现的安全性进行评估。为了精简用于能量分析的多层感知器(multi-layer perceptron,MLP)网络结构,减少模型的训练参数和训练时间,针对基于汉明重量(HW)和基于比特的MLP神经网络的模型进行了研究,输出类别由256分类分别减少为9分类和2分类;通过采集AES密码算法运行过程中的能量曲线对所提出的MLP神经网络进行训练和测试。实验结果表明,该模型在确保预测精度的前提下能减少MLP神经网络84%的训练参数和28%的训练时间,并减少了密钥恢复阶段需要的能量曲线数量,最少只需要一条能量曲线即可完成AES算法完整密钥的恢复。实验验证了模型的有效性,使用该模型可以对分组密码算法实现的安全性进行分析和评估。

基金项目

军队科研资助项目

出版信息

DOI: 10.19734/j.issn.1001-3695.2019.12.0703
出版期卷: 《计算机应用研究》 印刷出版, 2021年第38卷 第3期
所属栏目: 信息安全技术
出版页码: 881-885,892
文章编号: 1001-3695(2021)03-047-0881-05

发布历史

[2021-03-05] 印刷出版

引用本文

王恺, 蔡爵嵩, 严迎建. 基于MLP神经网络的分组密码算法能量分析研究 [J]. 计算机应用研究, 2021, 38 (3): 881-885,892. (Wang Kai, Cai Juesong, Yan Yingjian. Research on side channel analysis of block cipher algorithm based on MLP neural network [J]. Application Research of Computers, 2021, 38 (3): 881-885,892. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊