学习小波超分辨率系数的人脸超分算法

Wavelet-based deep learning algorithm for face super-resolution
刘颖
孙定华
公衍超
西安邮电大学 图像与信息处理研究所, 西安 710121

摘要

目前基于卷积神经网络的超分方法虽然在峰值信噪比和结构相似性评价指标上能取得优异的结果,但是得到的超分图像视觉质量较差,会丢失人脸五官区域的细节信息。针对这一现象,设计了一种新的深度神经网络来预测超分小波系数以获得信息丰富的超分辨率人脸图像。首先利用人脸图像的先验知识手动地给予五官区域更多的关注,然后在网络中引入线性低秩卷积运算,最后利用长距离依赖的思想补充超分图像的细节。实验验证该算法可以在获得较高的峰值信噪比和结构相似性的同时,使超分人脸图像五官区域更加清晰、视觉质量更优。

基金项目

国家自然科学基金资助项目(61801381)
陕西省国际合作交流项目(2018KW-003)

出版信息

DOI: 10.19734/j.issn.1001-3695.2019.08.0570
出版期卷: 《计算机应用研究》 印刷出版, 2020年第37卷 第12期
所属栏目: 图形图像技术
出版页码: 3830-3835
文章编号: 1001-3695(2020)12-065-3830-06

发布历史

[2020-12-05] 印刷出版

引用本文

刘颖, 孙定华, 公衍超. 学习小波超分辨率系数的人脸超分算法 [J]. 计算机应用研究, 2020, 37 (12): 3830-3835. (Liu Ying, Sun Dinghua, Gong Yanchao. Wavelet-based deep learning algorithm for face super-resolution [J]. Application Research of Computers, 2020, 37 (12): 3830-3835. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊