基于核密度估计的基本概率指派生成方法

New method to determine BPA based on kernel density estimation
黄杰1,2
尉永清3
伊静1,4
刘孟迪1,2
1. 山东师范大学 信息科学与工程学院, 济南 250358
2. 山东省分布式计算机软件新技术重点实验室, 济南 250014
3. 山东警察学院 公共基础部, 济南 250014
4. 山东建筑大学 计算机科学与技术学院, 济南 250014

摘要

D-S合成方法作用的对象是基本概率指派(basic probability assign,BPA),如何生成BPA是D-S理论应用中重要且有待解决的首要步骤。针对生成BPA提出一种基于核密度估计(kernel density estimation,KDE)的BPA生成方法:训练数据用于构建基于最优化窗宽的核密度估计的数据属性模型;然后利用训练数据的核密度模型计算测试数据的密度—距离—分布值Tri-D(density-distance-distribution),通过嵌套式的方法分配Tri-D值获取测试数据对应的BPA;最后D-S合成BPA得到最终判断,通过分类准确率来判断BPA生成方法的有效性。实验通过在UCI数据集上与其他方法的分类准确率对比验证了提出方法的有效性。

基金项目

国家自然科学基金资助项目(61373148)
山东省自然科学基金资助项目(ZR2014FL010)
山东省教育厅基金资助项目(J15LN34)
山东省社科规划项目(17CHLJ18,17CHLJ33,17CHLJ30)

出版信息

DOI: 10.19734/j.issn.1001-3695.2018.11.0882
出版期卷: 《计算机应用研究》 印刷出版, 2020年第37卷 第7期
所属栏目: 算法研究探讨
出版页码: 2037-2040,2044
文章编号: 1001-3695(2020)07-023-2037-04

发布历史

[2020-07-05] 印刷出版

引用本文

黄杰, 尉永清, 伊静, 等. 基于核密度估计的基本概率指派生成方法 [J]. 计算机应用研究, 2020, 37 (7): 2037-2040,2044. (Huang Jie, Wei Yongqing, Yi Jing, et al. New method to determine BPA based on kernel density estimation [J]. Application Research of Computers, 2020, 37 (7): 2037-2040,2044. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊