基于模糊蚁群的加权蛋白质复合物识别算法
Algorithm for identifying weighted protein complexes based on fuzzy ant colony clustering
江西理工大学 a. 信息工程学院; b. 应用科学学院 信息工程系, 江西 赣州 341000
摘要
针对蚁群融合FCM聚类算法在蛋白质相互作用网络中进行复合物识别的准确率不高、召回率较低以及时间性能不佳等问题进行了研究,提出一种基于模糊蚁群的加权蛋白质复合物识别算法FAC-PC(algorithm for identifying weighted protein complexes based on fuzzy ant colony clustering)。首先,融合边聚集系数与基因共表达的皮尔森相关系数构建加权网络;其次提出EPS(essential protein selection)度量公式来选取关键蛋白质,遍历关键蛋白质的邻居节点,设计蛋白质适应度PFC(protein fitness calculation)来获取关键组蛋白质,利用关键组蛋白质替换种子节点进行蚁群聚类,克服蚁群算法中因大量拾起放下和重复合并过滤操作而导致准确率较低和收敛速度过慢的缺陷;接着设计SI(similarity improvement)度量优化拾起放下概率来对节点进行蚁群聚类进而获得聚类数目;最后将关键蛋白质和通过蚁群聚类得到的聚类数目初始化FCM算法,设计隶属度更新策略来优化隶属度的更新,同时提出兼顾类内距和类间距的FCM迭代目标函数,最终利用改进的FCM完成复合物的识别。将FAC-PC算法应用在DIP数据上进行复合物的识别,实验结果表明FAC-PC算法的准确率和召回率较高,能够较准确地识别蛋白质复合物。
基金项目
国家自然科学基金资助项目(41562019,41530640)
江西省自然科学基金资助项目(GJJ161566)
江西省教育厅科技项目(GJJ151528,GJJ181504)
出版信息
DOI: 10.19734/j.issn.1001-3695.2018.10.0799
出版期卷: 《计算机应用研究》 印刷出版, 2020年第37卷 第5期
所属栏目: 算法研究探讨
出版页码: 1340-1348
文章编号: 1001-3695(2020)05-012-1340-09
发布历史
[2020-05-05] 印刷出版
引用本文
毛伊敏, 刘银萍, 胡健. 基于模糊蚁群的加权蛋白质复合物识别算法 [J]. 计算机应用研究, 2020, 37 (5): 1340-1348. (Mao Yimin, Liu Yinping, Hu Jian. Algorithm for identifying weighted protein complexes based on fuzzy ant colony clustering [J]. Application Research of Computers, 2020, 37 (5): 1340-1348. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊