基于3D卷积神经网络的视频哈希算法
Video hash algorithm based on 3D convolutional neural network
1. 北京联合大学 北京市信息服务工程重点实验室, 北京 100101
2. 北京开放大学, 北京 100081
3. 中国科学院自动化研究所 模式识别国家重点实验室, 北京 100190
摘要
针对目前相似性视频检索方法中快速性和准确性仍无法满足用户要求等问题,提出了一种基于3D卷积神经网络的视频快速检索方法。该算法将3D卷积神经网络与哈希学习方法结合应用于视频数据,既能快速学习视频时空特征表示,又能极大地缩短视频检索时间。在常用视频数据集上的实验结果表明,利用所提出的方法对视频进行相似性检索性能优于当前主流方法。
基金项目
国家自然科学基金资助项目(61871039,61571045,6180219,6190601)
国家科技支撑计划资助项目(2015BAH55F03,015BAH55F03)
北京市属高校高水平教师队伍建设创新团队建设提升计划资助项目(IDHT20170511)
北京市自然科学基金资助项目(4184088)
北京联合大学领军人才资助项目(BPHR2019AZ01)
北京市教委资助项目(KM201911417001,KM201711417005)
智能贺驶大数据协同创新中心资助项目(CYXC1902)
北京联合大学资助项目(WZ10201903)
出版信息
DOI: 10.19734/j.issn.1001-3695.2018.07.0664
出版期卷: 《计算机应用研究》 印刷出版, 2020年第37卷 第3期
所属栏目: 图形图像技术
出版页码: 887-890,900
文章编号: 1001-3695(2020)03-055-0887-04
发布历史
[2020-03-05] 印刷出版
引用本文
刘玉莹, 刘宏哲, 袁家政, 等. 基于3D卷积神经网络的视频哈希算法 [J]. 计算机应用研究, 2020, 37 (3): 887-890,900. (Liu Yuying, Liu Hongzhe, Yuan Jiazheng, et al. Video hash algorithm based on 3D convolutional neural network [J]. Application Research of Computers, 2020, 37 (3): 887-890,900. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊