融合高光谱影像三维空谱特征的子空间聚类算法

Subspace clustering algorithm fused three-dimensional spatial spectral features of hyperspectral images
李文洲a
邓秀勤a
刘富春b
广东工业大学 a. 应用数学学院; b. 计算机学院, 广州 510006

摘要

为提高高光谱遥感影像的聚类精度,将三维空谱特征和子空间聚类算法相结合,提出一种新的稀疏子空间聚类模型,在关注高光谱影像光谱信息的同时也关注了空间上下文信息。首先提取高光谱影像像素点的三种三维空谱特征;然后通过特征对子空间聚类模型的系数矩阵进行加权,使得像素点可被与它最为相似的像素点稀疏表示,从而获得更好的系数矩阵;最后由系数矩阵通过谱聚类获得更好的聚类结果。算法对四个经典高光谱数据集进行实验,并将实验结果与六种聚类算法进行比较,结果表明,所提出的3DF-SSC算法在四个数据集上获得的聚类精度都比其他算法要高,对于同样是利用三维空谱特征的M3DF3、3DF-SSC算法最高能提高8.62%的精度,而与同样是利用空间上下文信息对子空间聚类算法进行改进的L2-SSC和SS-LRSC算法相比,最高能提高25.18%的精度。

基金项目

国家自然科学基金资助项目(61673122)
广东省公益研究与能力建设专项资金资助项目(2015A030402006)
广东工业大学研究生创新及竞赛项目(2017YJSCX039)

出版信息

DOI: 10.19734/j.issn.1001-3695.2018.07.0482
出版期卷: 《计算机应用研究》 印刷出版, 2019年第36卷 第11期
所属栏目: 图形图像技术
出版页码: 3496-3498
文章编号: 1001-3695(2019)11-067-3496-03

发布历史

[2019-11-05] 印刷出版

引用本文

李文洲, 邓秀勤, 刘富春. 融合高光谱影像三维空谱特征的子空间聚类算法 [J]. 计算机应用研究, 2019, 36 (11): 3496-3498. (Li Wenzhou, Deng Xiuqin, Liu Fuchun. Subspace clustering algorithm fused three-dimensional spatial spectral features of hyperspectral images [J]. Application Research of Computers, 2019, 36 (11): 3496-3498. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊