根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

几何距优化质心结合隶属度约束RFCM的脑MRI图像分割算法

RFCM magnetic resonance brain image segmentation algorithm based on geometric distance optimization of centroid and membership constraints
南丽丽1
邓小英2
1. 运城学院 计算机科学与技术系, 山西 运城 044000
2. 北京理工大学 信息与电子学院, 北京 100081

摘要

针对现有图像分割算法聚类复杂以及分割精度不够高的问题,提出了基于几何距优化质心和粗糙模糊C-均值(RFCM)相结合的医学图像聚类分割算法。首先建立软集表示的像素集,并计算每个像素与质心之间的距离,然后基于像素和质心之间的最小距离,将像素分组到聚类中。为了将软集应用到粗糙模糊C-均值中,定义了一个模糊软集,进一步将输入图像转换为二值图像,通过计算连通区域的几何距选择适当的质心。最后利用这些新的质心计算更新像素的隶属度值,从而完成模糊聚类划分。在Allen Brain Atlas等三个医学数据库上评估了所提出混合算法的性能,获得的Jaccard系数和分割精度(SA)都优于几种对比算法。实验证明,提出的聚类分割算法具有良好的性能。

基金项目

国家自然科学基金资助项目(41374114)

出版信息

DOI: 10.19734/j.issn.1001-3695.2018.07.0428
出版期卷: 《计算机应用研究》 印刷出版, 2019年第36卷 第11期
所属栏目: 图形图像技术
出版页码: 3516-3520
文章编号: 1001-3695(2019)11-072-3516-05

发布历史

[2019-11-05] 印刷出版

引用本文

南丽丽, 邓小英. 几何距优化质心结合隶属度约束RFCM的脑MRI图像分割算法 [J]. 计算机应用研究, 2019, 36 (11): 3516-3520. (Nan Lili, Deng Xiaoying. RFCM magnetic resonance brain image segmentation algorithm based on geometric distance optimization of centroid and membership constraints [J]. Application Research of Computers, 2019, 36 (11): 3516-3520. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊