根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

改进引力搜索最小二乘支持向量机交通流预测

Traffic flow forecasting using least squares support vector machine optimized by modified gravitational search algorithm
徐钦帅a,b
何庆a,b
魏康园a,b
贵州大学 a. 大数据与信息工程学院; b. 贵州省公共大数据重点实验室, 贵阳 550025

摘要

为了提高基于最小二乘支持向量机的交通流预测模型的精度,提出一种新的改进引力搜索算法(TCK-AGSA)对其进行参数寻优。首先,基于tent映射改进Kbest函数,使算法具有跳出局部最优的机制;然后,引入全局最优引导策略,使粒子加速朝向最优解移动;接着,将进化度因子和聚合度因子引入速度更新权重系数,使算法具有较强的自适应能力。针对12个基准函数的仿真结果表明,TCK-AGSA的性能优于GSA及其改进算法。最后,建立基于TCK-AGSA寻优的最小二乘支持向量机模型,并选取2016年贵州省高速公路真实交通流数据进行预测实验,结果表明该模型具有更好的预测精度、鲁棒性和泛化能力。

基金项目

贵州省科技计划项目重大专项资助项目(黔科合重大专项字[2018]3002)
贵州省公共大数据重点实验室开放课题(2017BDKFJJ004)
贵州省教育厅青年科技人才成长项目(黔科合KY字[2016]124)
贵州大学培育项目(黔科合平台人才[2017]5788)

出版信息

DOI: 10.19734/j.issn.1001-3695.2018.07.0383
出版期卷: 《计算机应用研究》 印刷出版, 2019年第36卷 第12期
所属栏目: 算法研究探讨
出版页码: 3718-3724
文章编号: 1001-3695(2019)12-042-3718-07

发布历史

[2019-12-05] 印刷出版

引用本文

徐钦帅, 何庆, 魏康园. 改进引力搜索最小二乘支持向量机交通流预测 [J]. 计算机应用研究, 2019, 36 (12): 3718-3724. (Xu Qinshuai, He Qing, Wei Kangyuan. Traffic flow forecasting using least squares support vector machine optimized by modified gravitational search algorithm [J]. Application Research of Computers, 2019, 36 (12): 3718-3724. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊