基于Gabor小波和CNN的图像失真类型判定算法
Image distortion judgement based on Gabor wavelet and CNN
杭州电子科技大学 计算机学院, 杭州 310018
摘要
针对图像失真分类问题,提出了一种基于Gabor小波和卷积神经网络(convolutional neural network,CNN)的失真类型判定算法。该算法先利用Gabor小波的良好特性对图像进行特征粗提取,再通过改进的CNN进一步提取关键特征。算法步骤包括:首先对图像进行预处理(包括标签设定、样本均衡和样本扩充);然后对预处理后的图像进行八方向的Gabor小波变换,并将不同方向的子带叠加构成输入样本;最后通过自行设计的CNN和Softmax分类器对样本进行训练,训练过程中采用随机梯度下降和反向误差传播的方法对卷积核参数进行优化得到最终模型。对训练好的模型进行失真类型判定实验,在LIVE标准图像库上分类正确率达95.62%,表明本算法具有较高的准确性和鲁棒性。
基金项目
浙江省重点研发计划资助项目(2017C01022)
浙江省基础公益研究计划资助项目(LGG18F020013)
出版信息
DOI: 10.19734/j.issn.1001-3695.2018.03.0231
出版期卷: 《计算机应用研究》 印刷出版, 2019年第36卷 第10期
所属栏目: 图形图像技术
出版页码: 3179-3182
文章编号: 1001-3695(2019)10-067-3179-04
发布历史
[2019-10-05] 印刷出版
引用本文
李鹏程, 吴涛, 张善卿. 基于Gabor小波和CNN的图像失真类型判定算法 [J]. 计算机应用研究, 2019, 36 (10): 3179-3182. (Li Pengcheng, Wu Tao, Zhang Shanqing. Image distortion judgement based on Gabor wavelet and CNN [J]. Application Research of Computers, 2019, 36 (10): 3179-3182. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊