在线用户打分行为长记忆效应与信任关系研究

Study of long-term memory in online rating behavior for trust formation
郭昕宇
郭强
刘建国
上海理工大学 复杂系统科学研究中心, 上海 200093

摘要

对在线打分行为的动态研究能够帮助深入理解社交网络用户集群行为和信任关系的演化机制,当前许多在线系统用户能够通过对物品进行打分传达自己的观点。通过去趋势波动分析法研究了用户打分行为在信任关系建立前后的长记忆效应,并通过随机化打分时间和信任时间建立零模型,最后进行用户打分行为异质性分析。采用Epinions数据集进行实证研究,结果表明用户打分的长记忆效应在信任关系建立前出现下降趋势(8.06%),并于之后逐步回升(8.43%),而在两个零模型中赫斯特指数分别稳定在0.5和0.6左右,且用户长记忆效应变动与用户度呈正相关,Pearson相关系数分别为0.935 8和0.927 8。该工作有助于深入理解用户集群行为和信任关系的动态演化机制。

基金项目

国家自然科学基金面上项目(6173248,71771152)

出版信息

DOI: 10.19734/j.issn.1001-3695.2018.03.0094
出版期卷: 《计算机应用研究》 印刷出版, 2019年第36卷 第8期
所属栏目: 算法研究探讨
出版页码: 2275-2278
文章编号: 1001-3695(2019)08-007-2275-04

发布历史

[2019-08-05] 印刷出版

引用本文

郭昕宇, 郭强, 刘建国. 在线用户打分行为长记忆效应与信任关系研究 [J]. 计算机应用研究, 2019, 36 (8): 2275-2278. (Guo Xinyu, Guo Qiang, Liu Jianguo. Study of long-term memory in online rating behavior for trust formation [J]. Application Research of Computers, 2019, 36 (8): 2275-2278. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊