群智感知中基于社交属性及有效用户计算的任务分发机制
Task distribution mechanism based on social attribute and effective user calculation in crowd sensing
1. 苏州大学 计算机科学与技术学院, 江苏 苏州 215006
2. 江苏省无线传感网高技术研究重点实验室, 南京 210003
摘要
随着无线传感器网络的高速发展和多种移动智能设备的普及,移动群智感知(mobile crowd sensing,MCS)成为移动计算的核心。利用群智感知可完成大规模、复杂环境及社会感知任务,其中任务分发是这种应用中的一个重要环节。针对任务分发过程中存在感知环境复杂、用户数量达不到要求、收集数据质量低等问题,提出一种基于社交属性及有效用户计算的任务分发机制(effective user calculation,EUC)。该机制具有根据任务来筛选用户的特点,从用户角度看,EUC考虑了用户的社会性,由用户的社交网络传递相关信息来增加平台的有效用户数;从平台的角度看,EUC可根据任务的接收和提交情况动态调整有效用户的积分,从而保障整个系统的有效用户数。理论分析和实验结果表明,所提出的机制可提高系统的任务分发效率,并改善了收集数据的质量。
基金项目
国家自然科学基金资助项目(61201212)
江苏省自然科学基金资助项目(BK2011376)
江苏省“六大人才高峰”资助项目(2014-WLW-010)
苏州市融合通信重点实验室资助项目(SKLCC2013XX)
江苏省产学研前瞻性项目(BY2012114)
软件新技术与产业化协同创新中心资助项目
苏州市前瞻性应用研究计划项目(SYG201730)
出版信息
DOI: 10.19734/j.issn.1001-3695.2018.01.0002
出版期卷: 《计算机应用研究》 印刷出版, 2019年第36卷 第5期
所属栏目: 网络与通信技术
出版页码: 1493-1499
文章编号: 1001-3695(2019)05-045-1493-07
发布历史
[2019-05-05] 印刷出版
引用本文
杨玉仁, 张书奎, 龙浩, 等. 群智感知中基于社交属性及有效用户计算的任务分发机制 [J]. 计算机应用研究, 2019, 36 (5): 1493-1499. (Yang Yuren, Zhang Shukui, Long Hao, et al. Task distribution mechanism based on social attribute and effective user calculation in crowd sensing [J]. Application Research of Computers, 2019, 36 (5): 1493-1499. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊