基于梯度提升决策模型的空间占用检测研究

Occupancy detection based on extreme gradient boosting decision model
徐新卫1,2
丁敬安1
柳智才1
王多梅3
腾翔1
邵瑞瑞1
1. 安徽工业大学 管理科学与工程学院, 安徽 马鞍山 243000
2. 南京大学 计算软件新技术国家重点实验室, 南京 210000
3. 河海大学 公共管理学院, 南京 210000

摘要

随着绿色建筑和绿色生态城区经济激励机制基本形成,面对大量多维空间占用数据,大数据绿色建筑节能体系应运而生。然而大量多维的建筑数据却没有被充分利用,且传统空间占用检测模型分类精度还不够准确,模型时间复杂度较高。利用UCI占用检测数据集,在原始数据集上加入时间戳,使模型分类精度均获得提高,同时利用MCMR(最大相关最小冗余)方法进行特征选择,通过随机森林作为分类器验证分类效果,获取最优特征子集。利用选取的特征子集构建占用检测模型,其中XGBoost模型与随机森林模型(RF)进行比对,分类精度较高,且时间复杂度更低。

基金项目

国家社科基金资助项目(15BJL014)

出版信息

DOI: 10.19734/j.issn.1001-3695.2017.09.0907
出版期卷: 《计算机应用研究》 印刷出版, 2019年第36卷 第3期
所属栏目: 算法研究探讨
出版页码: 736-741
文章编号: 1001-3695(2019)03-019-0736-06

发布历史

[2019-03-05] 印刷出版

引用本文

徐新卫, 丁敬安, 柳智才, 等. 基于梯度提升决策模型的空间占用检测研究 [J]. 计算机应用研究, 2019, 36 (3): 736-741. (Xu Xinwei, Ding Jing'an, Liu Zhicai, et al. Occupancy detection based on extreme gradient boosting decision model [J]. Application Research of Computers, 2019, 36 (3): 736-741. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊