《计算机应用研究》|Application Research of Computers

混合策略改进的鲸鱼优化算法

Improved whale optimization algorithm based on hybrid strategy

免费全文下载 (已被下载 次)  
获取PDF全文
作者 郝晓弘,宋吉祥,周强,马明
机构 1.兰州理工大学 a.计算机与通信学院;b.电气工程与信息工程学院,兰州 730050;2.国网甘肃电力科学研究院 风电技术中心,兰州 730050
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2020)12-021-3622-05
DOI 10.19734/j.issn.1001-3695.2019.09.0528
摘要 针对标准鲸鱼优化算法易出现搜索速度慢、寻优精度低及早熟收敛等问题,提出一种混合策略改进的鲸鱼优化算法。首先采用混沌映射生成初始种群增加种群多样性,为算法全局搜索奠定基础;然后引入非线性策略改进收敛因子和惯性权重,平衡算法的全局探索与局部开发能力并加快收敛速度;最后根据群体适应度方差设定阈值进行变异操作,避免算法出现早熟收敛的现象。通过对12个典型基准函数进行三方面的性能测试,实验结果表明,改进算法在搜索速度、收敛精度等方面有显著提高,且摆脱陷入局部最优解的能力强。
关键词 鲸鱼优化算法; 混沌映射; 非线性策略; 惯性权重; 变异操作
基金项目 国家自然科学基金资助项目(61263008)
甘肃省重大专项(17ZD2GA010)
国家电网公司科技资助项目(SGGSKY00FJJS1700524)
本文URL http://www.arocmag.com/article/01-2020-12-021.html
英文标题 Improved whale optimization algorithm based on hybrid strategy
作者英文名 Hao Xiaohong, Song Jixiang, Zhou Qiang, Ma Ming
机构英文名 1.a.College of Computer & Communication,b.College of Electrical Engineering & Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China;2.Wind Power Technology Center,State Grid Gansu Electric Power Research Institute,Lanzhou 730050,China
英文摘要 In order to solve the problems of slow search speed, premature convergence and low search accuracy of standard whale optimization algorithm, this paper proposed a hybrid strategy to improve whale optimization algorithm. Firstly, it increased the population diversity by generating the initial population with chaotic map, which laid a foundation for the algorithm global search. Then, by the non-linear strategy, it improved the convergence factor and inertia weight to balance the global exploration, local development ability of the algorithm and accelerated the convergence speed. Finally, according to the variance of the group fitness, it set the threshold performing the mutation operation to avoid the premature convergence of the algorithm. By testing 12 typical benchmark functions in three aspects, the experimental results show that the improved algorithm has a remarkable enhancement in search speed and convergence accuracy. Besides, it has a strong ability to get rid of falling into local optimum.
英文关键词 whale optimization algorithm; chaotic mapping; nonlinear strategy; inertia weight; mutation operation
参考文献 查看稿件参考文献
 
收稿日期 2019/9/3
修回日期 2019/10/21
页码 3622-3626,3655
中图分类号 TP301.6
文献标志码 A