《计算机应用研究》|Application Research of Computers

融合动态社交关系的距离度量推荐算法

Distance metric recommendation algorithm for dynamic social relationships

免费全文下载 (已被下载 次)  
获取PDF全文
作者 葛君伟,岁飒,方义秋
机构 重庆邮电大学 a.软件工程学院;b.计算机科学与技术学院,重庆 400065
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2020)12-017-3603-04
DOI 10.19734/j.issn.1001-3695.2019.09.0544
摘要 目前,用户的好友关系及其自身呈现的动态变化趋势,使得基于静态社交关系的推荐算法难以满足现今瞬息万变的世界。为解决准确度较低等问题,提出利用用户购买物品的时序行为挖掘隐式社交关系的方法。首先将隐式社交与相似度算法相融合,其次针对近邻评分的稀疏性,提出改进的近邻评分填补方法,然后使用填补后的近邻评分对模型预测评分进行修正,最后生成预测评分。实验部分采用MovieLens数据集评估提出的方法,并与现存算法作对比分析。结果表明,该算法与传统算法及改进算法相比更稳定,也更有效地预测了目标用户的真实评分。
关键词 时序影响; 近邻集合; 社交关系; 距离度量; 时间衰退
基金项目 重庆市基础与前沿研究计划资助项目(cstc2015jcyjA30001)
本文URL http://www.arocmag.com/article/01-2020-12-017.html
英文标题 Distance metric recommendation algorithm for dynamic social relationships
作者英文名 Ge Junwei, Sui Sa, Fang Yiqiu
机构英文名 a.School of Software Engineering,b.School of Computer Science & Technology,Chongqing University of Posts & Telecommunications,Chongqing 400065,China
英文摘要 Nowadays, user's friendship relationship and itself are dynamic, therefore, the recommendation algorithm based on static social relationship is difficult to meet the needs of today's rapidly changing world. To solve the problem of low accuracy, this paper proposed a method utilized user's time-series behavior of purchasing item to mine implicit social relationship. Firstly, it integrated implicit social and similarity algorithm. Then, it proposed the improved neighbor score filling method for the sparsity of the neighbor score. Finally, it used the filled neighbor score to modify the model prediction score and generate the final prediction score. The experimental part used MovieLens dataset to evaluate the performance of proposed method and compare it with the existing algorithms. The experimental results show that the proposed algorithm is more stable and effective in predicting the true score of target users than traditional algorithms and improved algorithms.
英文关键词 temporal effects; neighbor set; social relationship; distance metric; time decay
参考文献 查看稿件参考文献
 
收稿日期 2019/9/25
修回日期 2019/11/4
页码 3603-3606
中图分类号 TP181
文献标志码 A