《计算机应用研究》|Application Research of Computers

改进利益驱动神经网络在欺诈信息的应用研究

Application research of improved interest-driven neural network in fraud information

免费全文下载 (已被下载 次)  
获取PDF全文
作者 孙林娟,贾月辉
机构 1.天津大学仁爱学院 计算机科学与软件系,天津 301636;2.天津中德应用技术大学 软件与通信学院,天津 300350
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2020)12-014-3590-04
DOI 10.19734/j.issn.1001-3695.2019.09.0532
摘要 为了研究个体收益和代价实现总体净收益的最大化问题,提出了利益驱动的人工神经网络(ANN)分类方法。该方法引入了惩罚函数,根据实例不同的重要程度对不同实例的误分类给予可变惩罚,并在之后对净利益进行最大化处理。为了生成对个体的惩罚,参照每个实例的收益,通过改变函数值对误差平方和函数进行了修改,提出了七个不同版本的ANN模型。两个欺诈信息的实验结果表明,与原ANN、决策树和朴素贝叶斯分类器相比,所提模型的不同版本在净利润项上的性能优于其他方法,而且能够针对不同的数据集采用不同的权值生成方式。
关键词 神经网络; 惩罚函数; 利益驱动; 欺诈信息; 分类器
基金项目 天津市科技计划项目技术创新引导专项优秀科技特派员项目(18JCTPJC51800)
本文URL http://www.arocmag.com/article/01-2020-12-014.html
英文标题 Application research of improved interest-driven neural network in fraud information
作者英文名 Sun Linjuan, Jia Yuehui
机构英文名 1.Dept. of Computer Science & Software,Tianjin University Ren'ai College,Tianjin 301636,China;2.School of Software & Communication,Tianjin Sino-German University of Applied Technology,Tianjin 300350,China
英文摘要 To study the problem of maximizing individual income and cost to achieve total net income, this paper proposed an interest-driven artificial neural network(ANN) classification method. In this method, it introduced penalty function, and gave variable penalties for misclassification of different instances according to the importance of different instances, and then maximized the net benefits. In order to generate penalties for individuals, according to the benefits of each instance, it proposed seven different versions of ANN models by modifying the sum of squares of errors function to change the value of the function. Compared with the original ANN, decision tree and naive Bayesian classifier, the experimental results of two fraudulent information show that different versions of the proposed model outperform other methods in terms of net profit items, and they can generate different weights for different data sets.
英文关键词 neural network; penalty function; interest-driven; fraudulent information; classifier
参考文献 查看稿件参考文献
 
收稿日期 2019/9/6
修回日期 2019/11/4
页码 3590-3593
中图分类号 TP391
文献标志码 A