《计算机应用研究》|Application Research of Computers

一种基于改进的巴氏系数的协同过滤推荐算法

Collaborative filtering recommendation algorithm based on improved Bhattacharyya coefficient

免费全文下载 (已被下载 次)  
获取PDF全文
作者 王伟,周刚
机构 天津大学 管理与经济学部,天津 300072
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2020)12-009-3569-03
DOI 10.19734/j.issn.1001-3695.2019.08.0521
摘要 传统基于邻居的协同过滤推荐方法必须完全依赖用户共同评分项,且存在极为稀疏的数据集中预测准确性不高的问题。巴氏系数协同过滤算法通过利用一对用户的所有评分项进行相似性度量,可以有效改善上述问题。但该种方法也存在两个很明显的缺陷,即未考虑两个用户评分项个数不同时的情况以及没有针对性地考虑用户偏好。在巴氏系数协同过滤算法的基础上进行了改进,既能充分利用用户的所有评分信息,又考虑到用户对项目的积极评分偏好。实验结果表明,改进的巴氏系数协同过滤算法在数据集上获得了更好的推荐结果,提高了推荐的准确度。
关键词 协同过滤; 巴氏系数协同过滤算法; 相似性度量
基金项目
本文URL http://www.arocmag.com/article/01-2020-12-009.html
英文标题 Collaborative filtering recommendation algorithm based on improved Bhattacharyya coefficient
作者英文名 Wang Wei, Zhou Gang
机构英文名 Dept. of Management & Economics,Tianjin University,Tianjin 300072,China
英文摘要 The traditional neighbor-based collaborative filtering recommendation method has to rely entirely on the common scoring items of users, and the accuracy of prediction in extremely sparse data sets is not high. Bhattacharyya coefficient collaborative filtering algorithm can effectively improve the above problems by using similarity measures for all the score items of a pair of users. But there are two obvious drawbacks to this approach, one is that it fails to consider the case that the number of scoring items of two users is not the same, the other is that there is no targeted consideration for user preferences. This paper improved the Bhattacharyya coefficient collaborative filtering algorithm, which could make full use of all the user's rating information and consider the user's positive rating preference for the project. Comparison of experimental results show that the improved Bhattacharyya coefficient collaborative filtering algorithm obtains better recommendation results on the dataset and improves the accuracy of the recommendation.
英文关键词 collaborative filtering(CF); Bhattacharyya coefficient collaborative filtering(BCF); similarity measure
参考文献 查看稿件参考文献
 
收稿日期 2019/8/26
修回日期 2019/10/23
页码 3569-3571
中图分类号 TP301.6
文献标志码 A