《计算机应用研究》|Application Research of Computers

基于改进模糊神经推理的武器装备系统组合决策

Portfolio decision of weapon system based on improved fuzzy neural inference

免费全文下载 (已被下载 次)  
获取PDF全文
作者 李瑞阳,何明,王智学,邓巧雨
机构 陆军工程大学 指挥控制工程学院,南京 210000
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2020)11-008-3241-05
DOI 10.19734/j.issn.1001-3695.2019.07.0261
摘要 针对武器装备系统组合决策问题,提出了一种新的基于自适应模糊神经推理的组合决策模型。首先用由高斯函数表示的模糊集定量描述武器系统的作战效能和敏捷性;接着基于波士顿投资组合矩阵进行武器系统模糊分类,建立自适应神经网络;最后利用鸟群算法优化模型相关参数。在样本数据库上的仿真结果表明,该方法可以反映武器系统组合状态,使决策者可以根据需求对组合策略进行调整更新。此外鸟群算法优化后的模型能够在一定程度上提高分类精度,与传统模型相比,具有更低的均方误差和更高的误差容忍率。
关键词 体系; 投资组合决策; 模糊神经推理; 波士顿投资矩阵; 鸟群算法
基金项目 国家重点研发计划资助项目
国家自然科学基金资助项目
国家杰出青年基金资助项目
本文URL http://www.arocmag.com/article/01-2020-11-008.html
英文标题 Portfolio decision of weapon system based on improved fuzzy neural inference
作者英文名 Li Ruiyang, He Ming, Wang Zhixue, Deng Qiaoyu
机构英文名 Institute of Command & Control Engineering,Army Engineering University of PLA,Nanjing 210000,China
英文摘要 To solve the problem of weapon system portfolio decision-making, this paper proposed a new portfolio decision model based on adaptive fuzzy neural inference. First, it described combat effectiveness and agility of the system by fuzzy sets represented by Gaussian functions. Then, it classified the weapon systems and the adaptive fuzzy neural model established based on Boston's portfolio matrix. Finally, it optimized the parameters which were related to the model by Satin bowerbird algorithm. The simulation result on the sample database shows that the method can reflect the state of the system of systems, so that the decision maker can adjust and update the portfolio scheme according to the demand. In addition, the optimized model based on Satin bowerbird algorithm can improve the classification accuracy to some extent, and has lower mean square error and higher error tolerance than the traditional model.
英文关键词 system of systems; portfolio decision; adaptive neuro-fuzzy inference system; BCG portfolio matrix; Satin bower bird optimization algorithm
参考文献 查看稿件参考文献
 
收稿日期 2019/7/16
修回日期 2019/9/4
页码 3241-3245
中图分类号 TP202
文献标志码 A