《计算机应用研究》|Application Research of Computers

一种基于改进RFM模型的数字集群用户分类方法

Digital cluster user classification method based on improved RFM model

免费全文下载 (已被下载 次)  
获取PDF全文
作者 卓灵,孙昕
机构 北京交通大学 电子信息工程学院,北京100044
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2020)09-053-2822-05
DOI 10.19734/j.issn.1001-3695.2019.05.0112
摘要 数字集群系统具有组呼和半双工通信等特点,针对传统用户分类方法不能满足数字集群用户分类需求的问题,提出一种基于改进RFM模型的数字集群用户分类方法。首先引入平均讲话时长属性建立RVS模型;然后采用层次分析法确定RVS模型参数的权重;最后,利用K-means++聚类算法对数字集群用户进行分类。仿真结果表明,使用提出的用户分类方法,数字集群用户分类的准确度可达到87.9%以上。
关键词 数字集群; 改进RFM模型; 用户分类; 参数权重
基金项目
本文URL http://www.arocmag.com/article/01-2020-09-053.html
英文标题 Digital cluster user classification method based on improved RFM model
作者英文名 Zhuo Ling, Sun Xin
机构英文名 School of Electronic & Information Engineering,Beijing Jiaotong University,Beijing 100044,China
英文摘要 The digital trunking system has the characteristics that the calling mode is mainly group calling and the communication mode is mostly half duplex. For the problem that the traditional user classification method couldn't meet the classification requirements of digital cluster users, this paper proposed a digital cluster user classification method based on improved RFM model. Firstly, it introduced the average speech duration attribute to establish the recency vitality speak(RVS) model. Then, it used the analytic hierarchy process to determine the weight of each parameter in the model. Finally, it used the K-means++ clustering algorithm to classify digital cluster users. The simulation result shows that, by using the user classification method proposed in this paper, the accuracy of digital cluster user classification can reach more than 87.9%.
英文关键词 digital trunking; improved RFM(recency frequency monetary) model; customer classification; parameter weight
参考文献 查看稿件参考文献
 
收稿日期 2019/5/2
修回日期 2019/7/5
页码 2822-2826
中图分类号 TP391
文献标志码 A