《计算机应用研究》|Application Research of Computers

利用搜索模型提升Simulink故障探测性能的方法研究

Research on improving Simulink fault detection performance using search model

免费全文下载 (已被下载 次)  
获取PDF全文
作者 谭程宏,卢雪松
机构 1.南京邮电大学通达学院,南京 225127;2.扬州大学 信息工程学院,江苏 扬州 225009
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2020)09-039-2758-04
DOI 10.19734/j.issn.1001-3695.2019.03.0154
摘要 针对很多方法中手动测试Oracle及运行测试用例成本较高的问题,提出一种基于搜索的测试和预测模型,以提升Simulink模型的故障探测性能。确定了三个旨在增加测试套件多样性的测试目标,并在基于搜索的算法中使用这些目标,以生成较小的多样化测试套件。为进一步实现测试套件的最小化,开发了一个预测模型,当添加测试用例无法提升故障探测性能时,该模型将停止测试用例的生成。评价结果表明,选择的三个测试目标能够显著提升较小测试套件的故障探测精度;且预测模型在维持几乎相同故障探测精度的同时,能够将新生成的测试用例平均数量减少一半以上。
关键词 Simulink模型; 故障探测; 多样性; 预测模型
基金项目 国家自然科学基金青年项目(61503281)
本文URL http://www.arocmag.com/article/01-2020-09-039.html
英文标题 Research on improving Simulink fault detection performance using search model
作者英文名 Tan Chenghong, Lu Xuesong
机构英文名 1.Tongda College of Nanjing University of Posts & Telecommunications,Nanjing 225127,China;2.School of Information Engineering,Yangzhou University,Yangzhou Jiangsu 225009,China
英文摘要 In view of the high cost of manually testing Oracle and running test cases in many ways, this paper proposed a search and prediction model based on search to improve the failure detection performance of Simulink model. It identified three test objectives witch designed to increase the diversity of test suite, and these targets were used in search based algorithm to generate smaller and diverse test suite. In order to further realize the minimization of test suite, it developed a prediction model. When adding test cases couldn′t improve the performance of fault detection, the model would stop the generation of test cases. The proposed methods were evaluated from three aspects. The results show that the selected three test targets can significantly improve the fault detection accuracy of the smaller test suite. This prediction model can maintain almost the same accuracy of fault detection while reducing the average number of new test cases by more than half.
英文关键词 Simulink model; failure detection; diversity; prediction model
参考文献 查看稿件参考文献
 
收稿日期 2019/3/3
修回日期 2019/5/8
页码 2758-2761
中图分类号 TP391
文献标志码 A