《计算机应用研究》|Application Research of Computers

基于局部增强与区域拟合的活动轮廓模型

Active contour model based on local enhancement and region fitting

免费全文下载 (已被下载 次)  
获取PDF全文
作者 王燕,段亚西,亓祥惠
机构 兰州理工大学 计算机与通信学院,兰州 730050
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2020)07-065-2232-05
DOI 10.19734/j.issn.1001-3695.2019.03.0091
摘要 针对活动轮廓模型在分割弱边缘图像及严重的灰度不均匀图像方面存在轮廓曲线不能很好地演化到目标边界等问题,提出了一种基于局部增强与区域拟合的活动轮廓模型。首先,利用局部区域增强方法将原始图像转换为新图像,以增强图像的对比度。其次,利用统计信息计算图像的区域拟合能量。然后,加入正则项以避免演化轮廓重新初始化,提高图像分割效率。最后,通过灰度不均匀的合成图像和真实图像的实验,验证了该算法的有效性。
关键词 活动轮廓模型; 灰度不均匀; 图像分割; 区域拟合
基金项目
本文URL http://www.arocmag.com/article/01-2020-07-065.html
英文标题 Active contour model based on local enhancement and region fitting
作者英文名 Wang Yan, Duan Yaxi, Qi Xianghui
机构英文名 School of Computer & Communication,Lanzhou University of Technology,Lanzhou 730050,China
英文摘要 Aiming at the problem that the active contour model can't evolve well to the target boundary in segmenting weak edge images and severe intensity inhomogeneous images, this paper proposed an active contour model based on local enhancement and region fitting. Firstly, it converted the original image to a new image by using a local area enhancement method to enhance the contrast of the image. Secondly, it used the statistical fit to calculate the region fitting energy of the image. Then, it added a regular term to avoid re-initialization of the evolution contour and improved image segmentation efficiency. Finally, it applied the model to synthetic and real images with intensity inhomogeneity, the experimental results validate the favorable performance of the proposed model.
英文关键词 active contour model; intensity inhomogeneity; image segmentation; region fitting
参考文献 查看稿件参考文献
 
收稿日期 2019/3/21
修回日期 2019/5/4
页码 2232-2236
中图分类号 TP391.41
文献标志码 A