《计算机应用研究》|Application Research of Computers

一种基于折线逼近操作的极化码译码算法

Decoding algorithm for polar codes based on polyline approximation operation

免费全文下载 (已被下载 次)  
获取PDF全文
作者 马秋然,高宏峰
机构 河南科技大学 信息工程学院,河南 洛阳 471023
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2020)07-025-2045-04
DOI 10.19734/j.issn.1001-3695.2018.12.0928
摘要 在加性高斯白噪声(additive white Gaussian noise,AWGN)信道下极化码的串行抵消(successive cancellation,SC)译码方法计算是在对数似然比(log likelihood ratio,LLR)域进行的,<i>f</i>函数节点的计算采用基于双曲正切规则的和积算法。针对双曲正切函数和反双曲正切函数提出了折线逼近算法,将这两个函数分别简化为9段折线函数;为了得到折线逼近算法下更优异的误帧率性能,编码前在信息比特中添加了16位CRC。仿真结果表明,针对码长<i>为N=1 024、信息位长度为K</i>=496的极化码,提出的改进算法比和积算法有更好的误帧率性能且降低了译码复杂度,提高了译码速度。
关键词 极化码; SC译码; 和积算法; 折线逼近算法; 误帧率
基金项目
本文URL http://www.arocmag.com/article/01-2020-07-025.html
英文标题 Decoding algorithm for polar codes based on polyline approximation operation
作者英文名 Ma Qiuran, Gao Hongfeng
机构英文名 School of Information Engineering,Henan University of Science & Technology,Luoyang Henan 471023,China
英文摘要 The successive cancellation(SC) decoding method for polar codes under additive white Gaussian noise(AWGN) channels is performed in the log-likelihood ratio(LLR) domain. The calculation of the <i>f</i> function nodes use a sum-product algorithm based on hyperbolic tangent rules. This paper proposed a polyline approximation algorithm, which simplified the hyperbolic tangent function and the inverse hyperbolic tangent function into a 9-segment polyline function respectively. In order to obtain better FER performance under the polyline approximation algorithm, this algorithm added a 16 bit CRC to the information bits before encoding. Simulation experiments show that for the polar codes with code length <i>N</i>=1 024 and information bit length <i>K</i>=496, the proposed algorithm has better FER performance than the sum-product algorithm, and it reduces the decoding complexity and improves the decoding speed.
英文关键词 polar code; SC decoding; sum-product algorithm; polyline approximation algorithm; frame error rate(FER)
参考文献 查看稿件参考文献
 
收稿日期 2018/12/6
修回日期 2019/3/15
页码 2045-2048,2053
中图分类号 TN911.2
文献标志码 A