《计算机应用研究》|Application Research of Computers

基于DL关联<i>εL</i><sup>++</sup>规则挖掘的归纳知识发现

DL association <i>εL</i><sup>++</sup> rules mining based inductive knowledge discovery

免费全文下载 (已被下载 次)  
获取PDF全文
作者 李春雨
机构 安阳工学院 计算机科学与信息工程学院,河南 安阳 455000
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2020)07-011-1974-05
DOI 10.19734/j.issn.1001-3695.2019.01.0008
摘要 为了从不完整和动态的数据中发现知识,提出了一种基于DL关联<i>εL</i><sup>++</sup>规则和归纳推理的一致知识发现。首先通过对描述逻辑<i>εL</i><sup>++</sup>规则和演化本体的知识动态性地分析得到了演化本体中的归纳推理学习,它是基于原子集支持度和权值以及关联<i>εL</i><sup>++</sup>规则的置信度,通过挖掘<i>εL</i><sup>++</sup>规则来实现的;其次,通过获得具有最小支持度和最小权值的代表性关联DL<i>εL</i><sup>++</sup>规则,实现对重要规则的精确识别,从而实现归纳知识发现。采用来自于某市历史数据的实验结果表明,提出的方法相比于现有的主流方法在演化本体和动态语义数据中的知识发现不仅有很好的扩展性,而且有更高的准确性。
关键词 动态数据; 知识发现; 描述逻辑; <;i>;εL<;/i>;<;sup>;++<;/sup>;规则; 支持度/置信度; 扩展性/准确性
基金项目 国家自然科学基金资助项目(U1204613)
本文URL http://www.arocmag.com/article/01-2020-07-011.html
英文标题 DL association <i>εL</i><sup>++</sup> rules mining based inductive knowledge discovery
作者英文名 Li Chunyu
机构英文名 School of Computer Science & Information Engineering,Anyang Institute of Technology,Anyang Henan 455000,China
英文摘要 In order to discover knowledge from incomplete and dynamic data, this paper proposed a technique for consistent knowledge discovery based on DL association <i>εL</i><sup>++</sup> rules and inductive reasoning. Firstly, by analyzing description logic <i>εL</i><sup>++</sup> rules and the dynamics of the knowledge of evolving ontology, it obtained inductive reasoning learning in evolving onto-logy. Basing on the support and weight of atomic set and the confidence of association <i>εL</i><sup>++</sup> rules, it achieved <i>εL</i><sup>++</sup> rules mining. Secondly, by getting the representative association DL <i>εL</i><sup>++</sup> rules with minimum support and minimum weight, it realized the precise identification of fundamental rules so as to complete inductive knowledge discovery. The experimental results for historical data from a certain city show that, compared with the existing mainstream methods, the proposed technique not only has better scalability, but also has higher accuracy in terms of evolving ontology and dynamic semantic data knowledge discovery.
英文关键词 dynamic data; knowledge discovery; description logics(DL); < i> εL< /i> < sup> ++< /sup> rule; support/confidence; scalability/accuracy
参考文献 查看稿件参考文献
 
收稿日期 2019/1/16
修回日期 2019/3/12
页码 1974-1978,1998
中图分类号 TP391
文献标志码 A