《计算机应用研究》|Application Research of Computers

融合连边符号语义信息的网络表示学习算法

Network representation learning algorithm incorporated with edge signed semantic information

免费全文下载 (已被下载 次)  
获取PDF全文
作者 王凯,赵学磊,李英乐,刘正铭,李星
机构 国家数字交换系统工程技术研究中心,郑州 450002
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2020)07-006-1946-06
DOI 10.19734/j.issn.1001-3695.2019.01.0012
摘要 为融合连边符号语义信息提升网络表示学习质量,针对现有算法处理复杂连边符号语义信息能力较弱问题,提出一种融合连边符号语义信息的网络表示学习算法,将包含正负关系的连边符号语义信息引入网络表示学习过程。首先,该算法设计基于三层感知机的关系预测模型刻画节点间不同类型的上下文链接关系;然后,引入随机游走策略实现上下文链接采样以适应大规模网络场景训练需求。在三个数据集中实验表明,该算法能够有效建模节点间不同类型的上下文链接关系,挖掘其中包含的复杂语义信息,相比目前最优的SIDE方法,所提算法的性能分别提高了0.31%、1.3%和1.85%。
关键词 网络表示学习; 信息融合; 连边符号语义信息; 上下文链接
基金项目 国家自然科学基金青年科学基金资助项目(61803384)
本文URL http://www.arocmag.com/article/01-2020-07-006.html
英文标题 Network representation learning algorithm incorporated with edge signed semantic information
作者英文名 Wang Kai, Zhao Xuelei, Li Yingle, Liu Zhengming, Li Xing
机构英文名 National Digital Switching System Engineering & Technological R&D Center,Zhengzhou 450002,China
英文摘要 In order to enhance the network representation learning quality with the edge signed semantic information, focusing on the weakness of existing fusion methods in dealing with complex edge signed semantic information, this paper proposed a network representation learning algorithm incorporating with edge signed semantic information, and introduced the edge signed semantic information containing positive and negative relations into the network representation learning process. Firstly, this paper designed a relationship prediction model based on the three-layer perceptron to depict different types of context link relations between nodes. Then it introduced the random walk strategy to implement context link sampling to adapt the large-scale network scenarios. Experiments on three data sets show that this algorithm can effectively model different types of context links between nodes and mine the complex semantic information contained in them. Compared with the current optimal SIDE method, the performance of the proposed algorithm is improved by 0.31%, 1.3% and 1.85%.
英文关键词 network representation learning; information fusion; edge signed semantic information; context link
参考文献 查看稿件参考文献
 
收稿日期 2019/1/23
修回日期 2019/3/18
页码 1946-1951
中图分类号 TP301.6
文献标志码 A